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Abstract: We report on a recent technique for finding finite models in multi-sorted first-order logic. The
approach extends the MACE-style approach of encoding the check for the existence of a finite model of a
certain size as a SAT problem. To deal with multiple sorts the space of possible assignments of sort domain
sizes is searched. To efficiently navigate through this space, arithmetical constraints are produced and passed
to an SMT solver which produces an answer describing the next domain size assignments to try. The technique
is implemented in the Vampire theorem prover.

1 Introduction

One method for establishing satisfiability of a first-order
formula is to search for a finite model. Such models are
useful in a number of applications. There have been vari-
ous approaches to finding finite models in first-order logic.
The technique we are interested in was pioneered by the
MACE model finder [4] and extended by the Paradox work
[2]. The basic idea is to encode the check for a finite model
of a certain size as a SAT problem.

We consider the extension of first-order logic with sorts.
In this setting a finite model may need to use different do-
main sizes for different sorts (see the example below). Our
new technique [5] explores the space of possible domain
size assignments (one domain size for each sort) by pro-
ducing constraints from each failed attempt and using an
SMT solver (in our case Z3 [3]) to guide the search.

2 The Monkey Village Example

There is a much-used simple example for finite model find-
ing with sorts. For a more interesting (similar) example see
our paper [5]. The example involves a village of monkeys
where each monkey owns at least two bananas. This can be
captured by two formulas:

(∀M : monkey)(b1(M) 6= b2(M)∧
owns(M, b1(M)) ∧ owns(M, b2(M)))

(∀M1,M2 : monkey)(∀B : banana)
(owns(M1, B) ∧ owns(M2, B) → M1 = M2)

where the predicate owns associates monkeys with bananas
and the functions b1 and b2 witness the existence of each
monkey’s minimum two bananas.

The smallest finite model for these formulas has a do-
main of size 1 for monkey and a domain of size 2 for
banana. The two sorts cannot have the same size as there
must be at least twice as many bananas as monkeys.

3 MACE-Style Finite Model Building

The MACE-Style approach produces a grounding of the
first-order problem using a given n domain constants and

then encodes this as a SAT problem. For this ground-
ing to be sound the problem needs to be put into flattened
clausal form where function and predicate symbols are
only applied to variables, e.g. owns(M, b1(M)) becomes
owns(M,x) ∨ b1(M) 6= x. The flattened clauses are then
instantiated with all mappings of variables to domain con-
stants. One then needs to also encode information about
functionality and totality of functions. For example, for the
unary function b1 and domain constants d1 and d2 for ba-
nana and c1 for monkey we add the following:

Functionality b1(c1) 6= d1 ∨ b1(c1) 6= d2
Totality b1(c1) = d1 ∨ b1(c1) = d2

One can optionally add symmetry breaking information
by ordering ground terms and making the smallest equal the
first domain element, etc. This is necessary for efficiency.

The search for finite models then involves producing and
checking SAT encodings for increasing domain sizes.

4 Adding Sorts

The previous encoding can be lifted to the multi-sorted set-
ting by introducing a set of domain constants per sort and
instantiating variables by constants from their sort. As pre-
viously noted, the number of domain constants per sort may
(necessarily) vary. We utilise a simple breadth-first search
algorithm of the possible domain size assignments. This
search is driven by constraints derived from failed SAT
proofs as summarised below.

Getting Constraints We update the above encoding so
that a failed check for a model can give us some insight
into why the check failed. We extend the encoding with
two extra labels |s| > n and |s| < n for each sort s and for
the concrete value n of the current size of the domain of s.
Intuitively these stand for the size of sort s being too small
or too big, respectively.

If we cannot satisfy a totality condition then the size of
the sort is too small (we need more domain constants) and



Table 1: Experimental Results .
CVC4 Paradox iProver Vampire CVC4 Vampire

FOF+CNF: sat 1181 1444 1348 1503 UF: sat 764 896
FOF+CNF: unsat - - 1337 1628 UF: unsat - 249

therefore we can extend the totality constraints to

b1(d1) 6= d1 ∨ b1(d1) 6= d2 ∨ |monkey | > 2

where the current size of monkey is 2. Conversely, if we
cannot satisfy a grounded input clause then the size of s
may be too large and we can extend the grounding to

owns(c2, d1) ∨ b1(c2) 6= d1 ∨ |monkey | < 2

using the previous clause from our example.
After extending the encoding we solve the SAT problem

under the assumptions that we are using the correct sort
sizes, i.e. we add the following for each sort s

¬(|s| > 2) ∧ ¬(|s| < 2).

The mechanism for solving under assumptions, supported
by many SAT solvers, provides a subset of these assump-
tions sufficient to show unsatisfiability of the SAT problem.
This subset is our set of constraints that explains why this
check failed.

Using Constraints To use these constraints to guide the
search we use an SMT solver to find a model of the con-
straints. This model will assign a value to each domain
size, giving us the next SAT problem to check. To ensure
that this search grows appropriately we add the additional
constraint that the sum of the sort sizes must initially equal
the number of sorts. If no model can be found with this
constraint then we add one to this value and try again.

5 More Fun with Sorts

We can do various other things in an attempt to improve this
search for the right combination of sort sizes.

Monotonic Sorts A sort s is monotonic for a formula ϕ
if adding another domain constant to s in a model of ϕ pro-
duces another model for ϕ (see [1]). Monotonic sorts can
be easily detected and used in a number of ways.

Collapsing Sorts All monotonic sorts can be treated as
a single sort. This reduces the size of the search space.
However, if one of these sorts needs to be very large then all
sorts will need to grow, potentially unnecessarily increasing
the size of the SAT encoding.

Expanding Subsorts Alternatively, one can infer sub-
sorts by identifying function and predicate positions that
are disjoint with respect to variables. If these subsorts are
monotonic then they can be treated as real sorts, with the
constraint that they do not grow larger than their parent sort.

More Constraints It is possible to detect constraints be-
tween sorts due to (for example) an injective function from
one sort to another. To detect such properties we adapt a
standard saturation algorithm to use a single proof attempt
to prove as many of these relationships as possible.

6 No Finite Model

There are cases where we can establish upper bounds on the
size of a sort e.g. when it only uses constant symbols. These
can be treated as additional constraints. If the resultant set
of constraints is unsatisfiable without the previous restric-
tion on sort sizes (that they sum to some number) then there
is no model and the problem is unsatisfiable.

7 Experiments and Concluding Remarks

Table 1 gives a brief summary of the experimental results
reported in [5]. Two sets of experiments are described. The
first considers unsorted TPTP problems and applies sort ex-
pansion. The second considers SMT-LIB problems from
the Uninterpreted Functions logic and applies monotonic
sort grouping. The new techniques perform better than the
other leading tools for finite model finding.

Future work involves introducing further heuristics for
symmetry breaking and search. One option is to explore
incomplete search strategies that skip parts of the search
space; sacrificing finite model completeness for efficiency.
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