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Abstract: Former studies show that there exists a class of ALC-TBoxes of depth one (i.e., with no nested
role restrictions) such that answering conjunctive queries is in PTIME in data complexity. We propose ideas
on how to rewrite such TBoxes into Horn-ALC-TBoxes of depth one via a resolution-based approach.

1 Introduction

Ontology-based data access (OBDA) has received particu-
lar attention from the research community in the last years.
When enhancing query answering by the use of an ontol-
ogy, one of the most natural questions arising is ‘how does
the ontology affect the complexity of query answering?’.
Studies focusing on a wide variety of ontology languages
and queries show that query answering becomes easily in-
tractable. This is the case, for example, for the ALC lan-
guage, where the worst-case data complexity it is known to
be CONP-COMPLETE when answering conjunctive queries
(CQs). It is, however, possible to identifyALC-TBoxes for
which CQ answering is tractable by adopting a fine-grained
approach.

[2] shows that for ALC-TBoxes of depth one (i.e., with
no nested role restrictions) there exists a P/CONP di-
chotomy, and it presents a semantic characterisation for
TBoxes where CQ answering is in PTIME. Specifically, [2]
proves the equivalence between materialisability, unravel-
ling tolerance and the ABox disjunction property for ALC-
TBoxes of depth one, and that CQ answering in the pres-
ence of these properties is in PTIME for data complexity.
For the purpose of this abstract we give only the formal
definition of the ABox disjunction property, and we refer
to [2] for the other definitions. A TBox T has the ABox
disjunction property if for all ABoxes A and EL concepts
C1, . . . , Cn, it follows from (T ,A) |= C1(a1) ∨ . . . ∨
Cn(an) that (T ,A) |= Ci(ai) for some i ≤ n. We re-
call that an EL concept is any concept built from ∃, u, >,
and any concept name A.

Recent results of our research show that for ALC-
TBoxes of depth one the ABox disjunction property
can be made stronger by requiring the Ci to be of at
most depth one, and that it is enough to check the
ABox disjunction property over ABoxes that can be ex-
pressed as a depth one EL assertion. For example,
the ABox {A(a), r(a, b), B(b), B′(b)} can be represented
as (A u ∃r.(B uB′))(a).

2 Resolution Calculus

The idea of adopting a resolution-based method as a rewrit-
ing procedure is not new, e.g. [1].

We indicate literals by L, where L := A | ¬A, a possibly
empty disjunction of literals by Ct orDt, a possibly empty
conjunction of literals by Cu or Du. In this context, arbi-

trary concepts C and D are of the form C := L | ∀r.Ct |
∃r.Cu. Finally, we indicate the complement by an overline
(e.g., L is the complement of a literal, Cu is the complement
of a conjunction of literals).

As the procedure is a resolution-based procedure, the in-
put is a set of DL clauses. The set of clauses is computed
using the common CNF transformation, with the proviso
that ∀r is distributed over conjunctions and ∃r is distributed
over disjunctions. Given the aforementioned definitions, a
clause is just a disjunction of arbitrary concepts, and we
indicate clauses by C and D. This normal form and repre-
sentation of clauses is possible because we assume the input
to be an ALC-TBox of depth one.

To simplify the calculus we assume that any clause in
the calculus does not present any repetition, neither in a
disjunction nor in a conjunction. Table 1 shows the rules of
the resolution calculus, which we call Res.

Subsumption between clauses can be defined on a com-
pletely syntactic level. First, let us define an ordering be-
tween role restricted concepts. We say that ∀r.Ct � ∀r.Dt
if Ct ⊆ Dt, and that ∃r.Cu � ∃r.Du if Du ⊆ Cu. We
indicate that a clause C subsumes a clause D by C � D.
C � D holds if either

• for all L ∈ C it is the case that L ∈ D,

• for all ∃r.Cu ∈ C there exists ∃r.Du ∈ D s.t. ∃r.Cu �
∃r.Du, and

• for all ∀r.Ct ∈ C there exists ∀r.Dt ∈ D s.t. ∀r.Ct �
∀r.Dt,

or,

C = L1t. . .tLn and ∀r.(L1t. . .tLm) ∈ D where m ≥ n.

A clause is redundant if it is subsumed or it is a tautology.
Clause simplification is applied during the saturation pro-

cess, and we indicate the exhaustive application of simpli-
fication rules to a clause C by SIMP(C). Apart from the
common simplification rules (e.g., removing ∃r.⊥ from a
clause), two rules need to be illustrated. First,

(Cond)
C t ∀r.Ct t ∀r.C′t
C t ∀r.C ′t

Ct ⊆ C ′t .

The (Cond) rule represents a condensation step. The first-
order translation helps to illustrate the purpose of the rule.



(BR)
C t C C t D

C t D
(∀⊥) C t ∀r.⊥ ∃r.Du t D

C t D

(BR∀) Ct t L D t ∀r.(L t Dt)
D t ∀r.(Ct t Dt)

(BR∃)
⊔

i Li t L C t ∃r.(L u Cu)
C t

⊔
i ∃r.(Li u Cu)

(∀∀) C t ∀r.(Ct t L) D t ∀r.(L t Dt)
C t D t ∀r.(Ct t Dt)

(∀∃)
C t ∀r.(

⊔
i Li t L) D t ∃r.(L u Du)
C t D t

⊔
i ∃r.(Li u Du)

Table 1: Rules of the resolution calculus Res

Consider as an example the clause ∀r.(A t B) t ∀r.(A t
B t C), its first-order translation is as follows.

¬r(x, y)∨A(y)∨B(y)∨¬r(x, z)∨A(z)∨B(z)∨C(z)

A first-order prover would substitute y with z, and then
apply factoring as much as possible. The resulting clause
would be ¬r(x, z)∨A(z)∨B(z)∨C(z), which subsumes
the original one. The (Cond) rule performs exactly the
same simplification.

Second,

(Taut)
C t ∀r.Ct t ∃r.Cu

>
Cu ⊆ Ct .

The (Taut) rule recognises particular tautologies, and it is
necessary for the second step of our procedure. The idea
behind this rule is that a clause such as ∀r.(AtB)t∃r.¬A
is equivalent to the TBox axiom ∃r.(¬A u ¬B) v ∃r.¬A,
where its tautological nature is more evident.

Given a set N of DL clauses, we indicate by Res∗�(N )
the saturation ofN w.r.t. Res and the redundancy criterion.

Claim 1. Let N be a set of DL clauses of an ALC-TBox
of depth one. Then Res∗�(N ) contains all non-redundant
consequences of N with depth less or equal one.

Soundness of the calculus can be easily proved, and refu-
tational completeness of Res∗� follows from Claim 1.

Claim 2. N is unsatisfiable iff ⊥ ∈ Res∗�(N ).

Claim 3. Res∗�(N ) terminates for any set N of clauses.
(There are only exponentially many non redundant conse-
quences of depth one.)

3 Procedure

Let us define a function POS as follows.

POS(C) =

{
∃r.

d
Ai if C = ∃r.Cu and Ai ∈ Cu

C otherwise

The POS function can be extended to clauses.
Let N be the set of DL clauses resulting from an ALC-

TBox of depth one. The procedure is divided into two parts.
First, the resolution calculus Res is exhaustively applied
toN , resulting in the set S = Res∗�(N ). Second, let S+ =

{C | C =SIMP(POS(C′)), C′ ∈ S}, and let S+
� be the result

of applying redundancy elimination to S+.

Claim 4. Let T be an ALC-TBox of depth one. T has the
ABox disjunction property iff any clause C ∈ S+

� is a Horn-
clause.

The intuition for Claim 4 is as follows. First, any clause
in S+

� can be rewritten as a TBox axiom C v D where C is
an EL concept. (⇒) Take a non-Horn clause in S+

� , build
an ABox A from the left hand-side of its TBox represen-
tation, and prove that the ABox disjunction property fails
on A. (⇐) If the ABox disjunction property fails on an
ABox A, then there exists a non-Horn clause in S∗�.

Claim 5. Let T be an ALC-TBox of depth one. If T has
the ABox disjunction property, then S+

� is a Horn rewriting
preserving CQ-answering.

4 Conclusion

The ideas proposed in this abstract represent a possible syn-
tactic characterisation for ALC-TBoxes of depth one for
which CQ answering is tractable. Due to the normal form
transformation and the size of the resulting set of clauses,
the procedure is double exponential in the size of the orig-
inal TBox. This result agrees with the upper bound we ob-
tained via a different approach. Evaluations of BioPortal
ontologies1, however, shows that the normal form transfor-
mation does not usually result in a substantial increase in
size.
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