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Abstract: We study translations from Metric Temporal Logic (MTL) over the natural numbers to Linear
Temporal Logic (LTL). In particular, we present two approaches for translating from MTL to LTL which
preserve the EXPSPACE complexity of the satisfiability problem for MTL. Our translations, thus, allow us to
utilise LTL provers to solve MTL satisfiability problems.

1 Introduction

Linear and branching-time temporal logics have been used
for the specification and verification of reactive systems.
In linear-time temporal logic [4] we can, for example, ex-
press that a formula ψ holds now or at some point in the
future using the formula ♦ψ (ψ holds eventually). However,
some applications require not just that a formula ψ will hold
eventually but that it holds within a particular time-frame
for example between 3 and 7 moments from now. To ex-
press metric constraints, a range of Metric Temporal Logics
(MTL) have been proposed, considering different underlying
models of time and operators allowed [3]. Here we use MTL
with pointwise discrete semantics, following [1], where each
state in the sequence is mapped to a time point on a time
line isomorphic to the natural numbers. In this instance of
MTL, temporal operators are annotated with certain finite as
well as infinite intervals, for example, 2[2,4]p means that p
should hold in all states that occur between the interval [2, 4]
of time, while 2[2,∞)p means that p should hold in all states
that occur at least 2 moments from now. We provide two sat-
isfiability preserving translations from MTL into LTL. Both
translations are polynomial in the size of the MTL formula
and the largest constant occurring in an interval (although
exponential in the size of the MTL formula due to the binary
encoding of the constants). Since the satisfiability problem
for LTL is PSPACE [5], our translations preserve the EX-
PSPACE complexity of the MTL satisfiability problem [1].

2 Metric Temporal Logic Translations

We briefly state the syntax and semantics of LTL and MTL.
Let P be a (countably infinite) set of propositional symbols.
Well formed formulae in LTL are formed according to the
rule: ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #ϕ | (ϕUψ) where p ∈ P .

LTL Semantics. A state sequence σ over (N, <) is an
infinite sequence of states σi ⊆ P , i ∈ N.

(σ, i) |= p iff p ∈ σi
(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ
(σ, i) |= #ϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= (ϕUψ) iff there is k ≥ i such that

(σ, k) |= ψ and for all j ∈ N,
if i ≤ j < k then (σ, j) |= ϕ

We denote by #c a sequence of c next operators. Fur-
ther connectives can be defined as usual: p ∨ ¬p ≡ true,
true ≡ ¬(false), trueUϕ ≡ ♦ϕ and ♦ϕ ≡ ¬2¬ϕ. MTL
formulae are constructed in a way similar to LTL, with the
difference that temporal operators are now bounded by an
interval I with natural numbers as end-points or∞ on the
right side. Note that since we work with natural numbers
as end-points we can assume w.l.o.g that all our intervals
are of the form [c1, c2] or [c1,∞), where c1, c2 ∈ N. Well
formed formulae in MTL are formed according to the rule:
ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #Iϕ | (ϕUIψ) where p ∈ P .

MTL Semantics. A strict timed state sequence ρ = (σ, τ)
over (N, <) is a pair consisting of an infinite sequence σ of
states σi ⊆ P , i ∈ N, and a function τ : N→ N that maps
every i corresponding to the i-th state to a time point τ(i)
such that τ(i) < τ(i+ 1).

(ρ, i) |= #Iϕ iff (ρ, i+ 1) |= ϕ and
τ(i+ 1)− τ(i) ∈ I

(ρ, i) |= (ϕUIψ) iff there is k ≥ i such that
τ(k)− τ(i) ∈ I and (ρ, k) |= ψ
and for all j ∈ N, if i ≤ j < k
then (ρ, j) |= ϕ

We omit propositional cases, which are as in LTL. Fur-
ther connectives can be defined as usual: trueUIϕ ≡ ♦Iϕ
and ♦Iϕ ≡ ¬2I¬ϕ. To transform an MTL formula into
Negation Normal Form, one uses the constrained dual until
ŨI operator [3], defined as (ϕŨIψ) ≡ ¬(¬ϕUI¬ψ). An
MTL formula ϕ is in Negation Normal Form (NNF) iff the
negation operator (¬) occurs only in front of propositional
variables. An MTL formula ϕ is in Flat Normal Form (FNF)
iff it is of the form p0∧

∧
i 2[0,∞)(pi → ψi) where p0, pi are

propositional variables or true and ψi is either a formula
of propositional logic or it is of the form #Iψ1, ψ1UIψ2 or
ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.
The transformations into NNF and FNF are satisfiability
preserving and can be performed in polynomial time. From
now on assume that our MTL formulae are in NNF and FNF.

From MTL to LTL: encoding ‘gaps’ We translate MTL
formulae for discrete time models into LTL using a new
propositional symbol gap. ¬gap is true in those states σ′j
of σ′ such that there is i ∈ N with τ(i) = j and gap is
true in all other states of σ′. As shown in Table 1, we
translate for example #[2,3]p into:

∨
2≤l≤3(#l(¬gap∧ p)∧



MTL LTL Gap Translation

(#[c1,∞)α)
] (

∧
1≤k<c1

#kgap)

∧ #c1(gapU(α ∧ ¬gap))
(#[c1,c2]α)

] ∨
c1≤l≤c2

(#l(¬gap ∧ α)
∧
∧

1≤k<l #
kgap)

(αU[c1,∞)β)
] (

∧
0≤k<c1

#k(gap ∨ α))
∧ #c1((gap ∨ α)U(¬gap ∧ β))

(αU[c1,c2]β)
] ∨

c1≤l≤c2
(#l(¬gap ∧ β)
∧
∧

0≤k<l #
k(gap ∨ α))

Table 1: MTL to LTL translation using ‘gap’ where α, β are
propositional logic formulae and c1, c2 > 0.∧

1≤k<l #
kgap).

Theorem 1. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an

MTL formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi →

(¬gap ∧ ψ]i )) be the result of replacing each ψi in ϕ by
ψ]i as in Table 1. Then, ϕ is satisfiable if, and only if,
ϕ] ∧ ¬gap ∧2(♦¬gap) is satisfiable.

From MTL to LTL: encoding time differences Let C − 1
be the greatest number occurring in an interval in an MTL
formula ϕ or 1, if none occur. W.l.o.g., we can consider
only strict timed state sequences where the time difference
from a state to its previous state is bounded by C [2]. Then,
we can encode time differences with a set Πδ = {δ−i | 1 ≤
i ≤ C} of propositional variables where each δ−i represents
a time difference of i w.r.t. the previous state (one could
also encode the time difference to the next state instead of
the difference from the previous state). We also encode
variables of the form snm with the meaning that ‘the sum
of the time differences from the last n states to the current
state is m’. For our translation, we only need to define these
variables up to sums bounded by 2 · C.

To simplify the presentation, we use two additional n-ary
boolean operators ⊕=1 and ⊕≤1. If S = {ϕ1, . . . , ϕn} is
a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn), also
written ⊕=1S, is a LTL formula. Let σ′ be a state sequence
and i ∈ N. Then (σ′, i) |= ⊕=1S iff (σ′, i) |= ϕj ∈ S for
exactly one ϕj ∈ S, 1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S
iff (σ′, i) |= ϕj ∈ S for at most one ϕj ∈ S, 1 ≤ j ≤ n.
Let SC be the conjunction of the following:

1. #2⊕=1 Πδ , for Πδ = {δ−k | 1 ≤ k ≤ C};

2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;

3. 2⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {sij | i ≤ j ≤
2 · C};

4. 2(#s1k ∧ s
j
l → #sj+1

l+k ), for 1 < j+ 1 ≤ l+k ≤ 2 ·C.

Point 1 ensures that at all times, the time difference k
from the current state to the previous (if it exists) is uniquely
encoded by the variable δ−k . In Point 2 we have that the sum
of the difference of the last state to the current, encoded by

MTL LTL Time Difference Translation

(#[c1,∞)α)
] #((

∨
c1≤i≤C δ

−
i ) ∧ α)

(#[c1,c2]α)
] #((

∨
c1≤i≤c2

δ−i ) ∧ α)

(αU[c1,∞)β)
] ∨

1≤i≤c1
(#i((

∨
c1≤j≤c1+C sij) ∧ αUβ)

∧ (
∧

0≤k<i #kα))

(αU[c1,c2]β)
] ∨

1≤i≤c2
(#i((

∨
c1≤j≤c2

sij) ∧ β)
∧ (

∧
0≤k<i #kα))

Table 2: MTL to LTL translation where α, β are proposi-
tional logic formulae and c1, c2 > 0.

s1k, is exactly δ−k . Point 3 ensures that at all times we cannot
have more than one value for the sum of the time differences
of the last i states. Finally, Point 4 has the propagation of
sum variables: if the sum of the last j states is l and the time
difference to the next is k then the next state should have that
the sum of the last j+ 1 states is l+ k. As shown in Table 2,
we translate, for example, #[2,3]p into #((δ−2 ∨ δ

−
3 ) ∧ p).

Theorem 2. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL

formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i )

be the result of replacing each ψi in ϕ by ψ]i as in Table 2.
Then, ϕ is satisfiable if, and only if, ϕ] ∧ SC is satisfiable.

3 Conclusion

We presented two translations from MTL to LTL. These
translations provide a route to practical reasoning about
MTL over natural numbers via LTL solvers. Our second
translation and the MTL decision procedure presented in [1]
are based on time differences and use the bounded model
property. However, the translations using ‘gap’ do not re-
quire this property.
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