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Abstract: This is a short outline of my Ph.D. project plans. This is a work in progress which aims at a
general theory of Syntax with Bindings, which will come together with a formalization in Isabelle/HOL and
some applications. The major contributions will be dealing with coinduction, infinite objects and generalized
notions of bindings.

1 Introduction

The central aim of the project we are here presenting is
to develop a framework for specification of, and reasoning
about, formal systems of relevance in computer science and
mathematical logic. We call “formal system” any logical
theory comprehending a syntax and some semantics; these
structures are heavily employed in modelling the seman-
tics of programming languages, type systems and logical
deduction.

Notably, the area of programming languages has seen
an explosion of formal systems aimed at capturing a wide
range of computational and logical analysis aspects. For ex-
ample, there is research in making programming languages
more secure and specification-conforming, reflected in a va-
riety of type systems (see Pierce’s monograph [5]) and for-
mal analysis tools, such as proof assistants , model checkers
, J-Flow and other security tools, CSP-based tools etc. All
this research relies on methodologies for rigorous, formal
reasoning and computation.

Even though formal systems come in a wide variety,
there are some fundamental mechanisms that seem com-
mon to all (or most) of them. These include the notions of
binding and scoping aimed at dealing with locality: a pro-
gram variable can be bound in a certain submodule (such as
a function or a procedure) or a logic variable can be bound
in the scope of a quantifier. Binding typically comes in pair
with the notion of instantiation or substitution. For exam-
ple, when a programming function is applied to a value,
its execution proceeds by instantiating its formal parameter
with that value and then evaluating the body of the function.
In formal logic, this corresponds to the notion of substitut-
ing a term for a variable. Often, the operational behaviour
of programs can be understood in terms of the interplay be-
tween bindings and instantiation/substitution. The laws that
govern this interplay obey certain patterns that can be con-
ceptualized in isolation from the particular language.

Another important aspect in formal systems is dealing
with infinite behaviour. A finite syntactic object may pro-
duce an infinite semantic object by unfolding (as in oper-
ational semantics) or by interpretation (as in denotational
semantics). The syntactic world is guided by bindings
and substitution, whereas, in mirror, the semantic world is
guided by functional objects and application. Likewise, the
syntactic world can be specified inductively, whereas the
semantic world is best describable coinductively.

Our work will contribute to the identification of such pat-
terns and their presentation as a general theory, in the style
of Universal Algebra, widely applicable for many formal
systems. This work will be guided by concrete applica-
tions, including well-known challenges in formal reasoning
and cases of notoriously difficult or tedious constructions.
We plan to validate and illustrate our results on concrete
case studies conducted in the proof assistant Isabelle/HOL
[1].

2 The General Framework

The starting point of this project is that formal systems
share a common syntactic structure. With the development
of a unifying theory for syntax with bindings we aim at
building a formalized framework, which can capture many
formal systems and constructions as particular instances.
In this section we sketch an embryonic version of the
syntactic part of this framework.

First we need to be given a set of sorts, which are spec-
ified when the framework is instantiated. The intuition is
that each object of the system is of a certain sort; if a sort is
allowed to contain variables, it is said a variable sorts.

Example. In simply typed lambda calculus there are just
two sorts, one for terms and one for types. As we need term
variables, terms (but not types) are elements of a certain
variable sort.

The next step is to populate our system. For every sort
we give some elements, terms, which will form the respec-
tive syntactic category. Usually some auxiliary objects are
given, as a base case; we call these the context. For ex-
ample, the context must contain a countably infinite set of
variables for every variable sort. The way we build every
other element is with a set of constructors, given for the
specific formal system. Every constructor comes with its
arity; here we must also declare which are the bound vari-
ables in which term.

In short, we have a set, the syntactic category, for every
sort, the elements of which are called terms and are defined
inductively by means of constructors.

Example. Let us consider the constructors of the simply
typed lambda calculus. The syntactic category Type of
types has one constructor b for each type constant and an-
other constructor→which takes two types and builds a type



(the usual type of functions). The syntactic category Term
of terms contains as a subset a countably infinite set of vari-
ables. Its constructor are:

• a constructor for every term constant c;

• a constructor for applications, which from two terms
M and N builds a third one MN ;

• a constructor for abstractions, which binds a variable
x of a certain type σ in the term M , building the term
λx : σ.M .

As for inference systems, the theory of Nominal Logic
has already taken care of inductive ones [6], by means of
swapping, equivariance and freshness. For the coinductive
case however, such a general theory still need to be devel-
oped.

To conclude, it is worth mentioning that from this pre-
sentation it is possible to move a first automatic step into
the semantics of the formal system. First we need a domain
(a set) for every sort, in which we will interpret the terms
of that sort. If the sort is a variable sort we also need a val-
uation, namely a function that maps variables in elements
of the appropriate domain. To conclude we must have a
function for every constructor, in a way that the arity of the
function matches the arity of the constructor. Once we are
given these objects we can define the interpretation for ev-
ery term by structural recursion, with a standard treatment
for bindings.

3 Objectives

The central objective of our project is to develop a Univer-
sal Algebra for Syntax with Bindings, that improves on the
state of art.

The first step will be to develop a solid and unitary the-
ory, which addresses notoriously problematic features, es-
pecially substitution in terms modulo alpha equivalence,
and integrates syntax and semantics. Here the progress will
be in terms of generality, rigour and a formalization in Is-
abelle/HOL.

The universal theory I am proposing will also allow flex-
ible bindings, including recursively specified bindings (e.g.
records and patterns [2]).

While Nominal Logic [6] covers largely the theory for
inductive objects, there are no such comprehensive works
for coinductively defined objects involving bindings. More-
over our work will take care of codatatypes, and in general
objects with no finite support. This means that for these
it is not always possible to generate a fresh variable (i.e.
different from every other in the object) just because their
syntactic structure involves a finite number of variables. A
significant example of these structure are infinite trees, as
Bohm trees in Barendregt [3] or as the semantics naturally
associated to infinite terms by repeatedly unfolding.

In short, here the main goal is to achieve a formal general
treatment of infinite objects modulo α-equivalence and of
corecursion and coinduction for binding structures.

Our project will also provide some general result for
the denotational semantics of a generic formal system. In
particular it will capture in a general way the substitution
lemma and the fact that the interpretation of the term does
not depend on the valuation for the non-free variables in
that term.

Moreover, the framework is intended to grasp a more
complex notion of bindings, for example the recursive bind-
ing of the System F (as in the POPLmark document [2] and
in Pierce [5]). Here techniques from category theory will
be heavily involved, such as Bounded Natural Functors [7].

In terms of applications, for example this framework will
be suitable for a formalization of a real programming lan-
guage. Moreover it will give a tool for a general treatment
of adequacy in Higher Order Abstract Syntax, in contrast
with the current literature characterized by different solu-
tions to particular examples.

A deeper theory of binders could allow to faithfully rep-
resent the behaviour of actual bindings in languages such
as Java, and also provide a mathematical model to the phe-
nomenon of entanglement in quantum computing: we could
imagine a quantum system and indeed a quantum program
as a term of a certain syntax, in which the entanglement
link between two particles is represented by an appropriate
binding of two objects in the term.
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