
KSP: A resolution-based prover for multimodal K
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Abstract: We briefly present a new normal form and calculus for the propositional basic multimodal logic Kn.
We introduce the prover KSP that implements that calculus and methods for normal form transformation. We
present an experimental evaluation that compares KSP with a range of existing reasoners for Kn.

1 Introduction

Automatic theorem proving for the basic multimodal
logic Kn, the logic that extends propositional logic with
unary operators [a] and 〈a〉 for each index a in a finite set
A, has been intensely studied as it is able to express non-
trivial problems in Artificial Intelligence and other areas.
For instance, the description logic ALC, which has been ap-
plied to terminological representation, is a syntactic variant
of Kn. Problems in Quantified Boolean Propositional Logic
can also be translated into Kn. In this paper we briefly de-
scribe a new normal form and calculus for Kn, the prover
KSP implementing the calculus, and present an experimen-
tal evaluation of KSP.

2 A Normal Form and Calculus for Kn

In [6] we have presented a novel resolution-based calculus
for Kn. The calculus takes advantage of the following well-
known properties of basic modal logic: (i) if a modal for-
mula ϕ is satisfiable, then it is satisfiable in a Kripke model
where the union of the accessibility relations is a tree; and
(ii) in tree models, checking the local satisfiability of ϕ can
be reduced to checking the local satisfiability of its subfor-
mulae at the depth of a model with corresponds to the modal
level where those subformulae occur in ϕ.

The calculus operates on labelled clauses of the form
ml : C (literal clause), ml : l → [a]l′ (positive a-clause),
ml : l→ 〈a〉l′ (negative a-clause) where ml ∈ N ∪ {∗}, C
is a propositional clause, and l, l′ are propositional literals.
Intuitively, the label ml indicates the depth of the Kripke
model at which the clause is true. The special label ∗ is
used if a clause is true at all depths/worlds in a model and
it normally only occurs in the normal form if we want to
check a formula for global satisfiability instead of local sat-
isfiability. Any formula of Kn can be transformed into an
equi-satisfiable set of labelled clauses.

The calculus uses a simple form of unification. We
define a partial function σ on sets of labels as follows:
σ({ml, ∗}) = ml; and σ({ml}) = ml; otherwise, σ is
undefined. The rules of the calculus, shown in Table 1, can
only be applied if the unification of the labels involved is
defined.

[LRES] ml1 : C ∨ l
ml2 :D ∨ ¬l
ml : C ∨D

[MRES] ml1 : l1→[a]l
ml2 : l2→〈a〉¬l
ml :¬l1 ∨ ¬l2

[GEN1] ml1 : l
′
1 → [a]¬l1

...
mlm : l′m → [a]¬lm

mlm+1 : l
′ → 〈a〉¬l

mlm+2 : l1 ∨ . . . ∨ lm ∨ l
ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

[GEN2] ml1 : l
′
1 → [a]l1

ml2 : l
′
2 → [a]¬l1

ml3 : l
′
3 → 〈a〉l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3
[GEN3] ml1 : l

′
1 → [a]¬l1

...
mlm : l′m → [a]¬lm

mlm+1 : l
′ → 〈a〉l

mlm+2 : l1 ∨ . . . ∨ lm
ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

Table 1: Inference rules, where ml = σ({ml1,ml2}) in
LRES, MRES; ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1}) in
GEN1, GEN3; and ml = σ({ml1,ml2,ml3}) in GEN2.

3 KSP

KSP is an implementation, written in C, of the calculus in
Table 1. It also incorporates a range of methods to trans-
form modal formulae into the clausal normal form that the
calculus operates on. The main loop is based on the given-
clause algorithm implementation in Otter, a variation of the
set of support strategy.

Besides the basic calculus KSP uses three more inference
rules including unit resolution. The user can restrict LRES
by choosing ordered (clauses can only be resolved on their
maximal literals with respect to an ordering chosen by the
prover in such a way to preserve completeness), negative
(one of the premises is a negative clause, i.e. a clause where
all literals are negative), positive (one of the premises is a
positive clause), or negative + ordered resolution (both neg-
ative and ordered resolution inferences are performed). The
completeness of some of these refinements depends on the



particular normal form chosen. For a comprehensive de-
scription of KSP see [4], the prover itself is available at [5].

4 Evaluation

We have compared KSP with BDDTab, FaCT++ 1.6.3,
InKreSAT 1.0, Spartacus 1.0, and a combination of the op-
timised functional translation [2] with Vampire 3.0 (OFT +
Vampire).

Our benchmarks, available at [5], consist of three collec-
tions of modal formulae:
1. Modalised random QBF (MQBF) formulae [3] (1016

formulae, 617 known to be satisfiable and 399 known
to be unsatisfiable).

2. LWB basic modal logic benchmark formulae, further
subdivided into 18 classes [1] (1008 formulae, half are
satisfiable and half are unsatisfiable by construction of
the benchmark classes).

3. Randomly generated 3CNFK formulae [7] over 3 to 10
propositional symbols with modal depth 1 or 2 (1000
formulae, 457 are known to be satisfiable and 464 are
known to be unsatisfiable).

Figure 1 shows the performance of the various provers on
these three collections of benchmark formulae, in particu-
lar, the graphs show how many formulae a prover can solve
if given a certain amount of CPU time to solve each. KSP
performs significantly better than any of the other provers
on the MQBF collection. On the LWB collection over-
all, KSP performs about as well as BDDTab, FaCT++ and
InKreSAT, while Spartacus performs best. A more detailed
analysis shows that BDDTab and InKreSAT are the best
performing provers on one LWB class each, OFT + Vam-
pire on two, KSP on six, and Spartacus on eight classes. Fi-
nally, on the 3CNFK collection, InKreSAT is the best per-
forming prover and KSP the worst performing one.

In general, KSP performs best on formulae with high
modal depth where atomic subformulae are (evenly) spread
over a wide range of modal levels. The benchmarks indi-
cate that KSP is a useful addition to the collection of provers
that are already available for Kn.
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Figure 1: Benchmarking results
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