
Proceedings of the
Automated Reasoning Workshop 2016
Bridging the Gap between Theory and Practice
ARW 2016

19th–20th May 2016
University of Liverpool
Liverpool, United Kingdom

Editor:
Ullrich Hustadt

Department of Computer Science
University of Liverpool



c© 2016 for the individual papers by the papers’ authors. Reproduction (electronically or by other
means) of all or part of this technical report is permitted for educational or research purposes only, on
condition that (i) this copyright notice is included, (ii) proper attribution to the editor(s) or author(s) is
made, (iii) no commercial gain is involved, and (iv) the document is reproduced without any alteration
whatsoever. Re-publication of material in this technical report requires permission by the copyright
owners.



Preface

This volume contains the proceedings of ARW 2016, the twenty-third Workshop on Automated Reason-
ing, held 19th–20th May 2016, in Liverpool, England (UK). As for the previous events in this series,
this workshop provides an informal forum for the automated reasoning community to discuss recent
work, new ideas and current trends. It aims to bring together researchers from all areas of automated
reasoning in order to foster links and facilitate cross-fertilisation of ideas among researchers from various
disciplines; among researchers from academia, industry and government; and between theoreticians and
practitioners.

These proceedings contain the abstracts of two invited talks, by Julian Padget (University of Bath), on
“Deontic Sensors”, and Ulrich Berger (Swansea University), on “Extracting nondeterministic programs”,
and eleven extended abstracts contributed by participants of the workshop.

The abstracts cover a wide range of topics including the use of SAT and SMT solvers for finite
model finding with sorts; a model for intelligent agents (sensors) on wireless sensor networks to guard
against energy-drain attacks; the probabilistic verification of an ant-based control algorithm for a swarm
of robots; a method for forgetting of concept and role symbols in ontologies in an expressive description
logic; a resolution-based approach to rewriting ALC-TBoxes into Horn-ALC-TBoxes of depth one for
which conjunctive query answering can be done efficiently; translations from Metric Temporal Logic
over the natural numbers to Linear Temporal Logic; ideas for the development of a universal algebra
for syntax with bindings; the use of model-checking for the verification of autonomous systems that
use rational agents to make decisions; a new normal form, calculus and prover for propositional basic
multimodal logic; modal tableau systems with blocking and congruence closure; and natural deduction
systems for classical and non-classical logics.

I would like to thank the members of the ARW Organising Committee for their advice. I would also
like to thank all the colleagues who have helped with the local organisation, namely, Rebekah Martin,
Dave Shield, Elaine Smith, and Lisa Smith.

Liverpool Ullrich Hustadt
May 2016
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Deontic Sensors
Julian Padget

Department of Computer Science, University of Bath
j.a.padget@bath.ac.uk

Procedural programs do what we tell them, but not always what we want them to do, especially when presented with
unexpected inputs (that we did not think about). We assume that such tight control reduces risk, whereas giving a program
more autonomy is scary: “who knows what it might do?!?!”.

In principle, some autonomy to choose an appropriate action ought to be at least as good and possibly better, by
allowing greater resilience. But a program’s capacity to understand its environment is limited to what the designer knows
or can foresee, which is no better than where we started.

To provide up-to-date interpretation of (aspects of) the environment, we propose “deontic sensors”, based on a formal
model and realised through Answer Set programming. These sensors observe program actions and provide advice on what
a program (agent!) can, ought and ought not to do and illustrate the concept with examples from a variety of socio-technical
system demonstrators.
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Extracting nondeterministic programs
Ulrich Berger

Department of Computer Science, Swansea University
u.berger@swansea.ac.uk

Program extraction exploits the Curry-Howard correspondence for the automatic synthesis of verified programs from
formal constructive proofs. After an overview of the method the talk will focus on a particular application in exact real
number computation. We introduce an extension of intuitionistic fixed point logic by a modal operator for nondeterminism
and apply it to extract programs computing with Tsuiki’s infinite Gray code for real numbers.
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Using SAT and SMT Solvers for Finite Model Finding with Sorts
Giles Reger1 Martin Suda2

1 University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

2 Institute for Information Systems, Vienna University of Technology, Austria
msuda@forsyte.tuwien.ac.at

Abstract: We report on a recent technique for finding finite models in multi-sorted first-order logic. The
approach extends the MACE-style approach of encoding the check for the existence of a finite model of a
certain size as a SAT problem. To deal with multiple sorts the space of possible assignments of sort domain
sizes is searched. To efficiently navigate through this space, arithmetical constraints are produced and passed
to an SMT solver which produces an answer describing the next domain size assignments to try. The technique
is implemented in the Vampire theorem prover.

1 Introduction

One method for establishing satisfiability of a first-order
formula is to search for a finite model. Such models are
useful in a number of applications. There have been vari-
ous approaches to finding finite models in first-order logic.
The technique we are interested in was pioneered by the
MACE model finder [4] and extended by the Paradox work
[2]. The basic idea is to encode the check for a finite model
of a certain size as a SAT problem.

We consider the extension of first-order logic with sorts.
In this setting a finite model may need to use different do-
main sizes for different sorts (see the example below). Our
new technique [5] explores the space of possible domain
size assignments (one domain size for each sort) by pro-
ducing constraints from each failed attempt and using an
SMT solver (in our case Z3 [3]) to guide the search.

2 The Monkey Village Example

There is a much-used simple example for finite model find-
ing with sorts. For a more interesting (similar) example see
our paper [5]. The example involves a village of monkeys
where each monkey owns at least two bananas. This can be
captured by two formulas:

(∀M : monkey)(b1(M) 6= b2(M)∧
owns(M, b1(M)) ∧ owns(M, b2(M)))

(∀M1,M2 : monkey)(∀B : banana)
(owns(M1, B) ∧ owns(M2, B) →M1 =M2)

where the predicate owns associates monkeys with bananas
and the functions b1 and b2 witness the existence of each
monkey’s minimum two bananas.

The smallest finite model for these formulas has a do-
main of size 1 for monkey and a domain of size 2 for
banana. The two sorts cannot have the same size as there
must be at least twice as many bananas as monkeys.

3 MACE-Style Finite Model Building

The MACE-Style approach produces a grounding of the
first-order problem using a given n domain constants and

then encodes this as a SAT problem. For this ground-
ing to be sound the problem needs to be put into flattened
clausal form where function and predicate symbols are
only applied to variables, e.g. owns(M, b1(M)) becomes
owns(M,x) ∨ b1(M) 6= x. The flattened clauses are then
instantiated with all mappings of variables to domain con-
stants. One then needs to also encode information about
functionality and totality of functions. For example, for the
unary function b1 and domain constants d1 and d2 for ba-
nana and c1 for monkey we add the following:

Functionality b1(c1) 6= d1 ∨ b1(c1) 6= d2
Totality b1(c1) = d1 ∨ b1(c1) = d2

One can optionally add symmetry breaking information
by ordering ground terms and making the smallest equal the
first domain element, etc. This is necessary for efficiency.

The search for finite models then involves producing and
checking SAT encodings for increasing domain sizes.

4 Adding Sorts

The previous encoding can be lifted to the multi-sorted set-
ting by introducing a set of domain constants per sort and
instantiating variables by constants from their sort. As pre-
viously noted, the number of domain constants per sort may
(necessarily) vary. We utilise a simple breadth-first search
algorithm of the possible domain size assignments. This
search is driven by constraints derived from failed SAT
proofs as summarised below.

Getting Constraints We update the above encoding so
that a failed check for a model can give us some insight
into why the check failed. We extend the encoding with
two extra labels |s| > n and |s| < n for each sort s and for
the concrete value n of the current size of the domain of s.
Intuitively these stand for the size of sort s being too small
or too big, respectively.

If we cannot satisfy a totality condition then the size of
the sort is too small (we need more domain constants) and
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Table 1: Experimental Results .
CVC4 Paradox iProver Vampire CVC4 Vampire

FOF+CNF: sat 1181 1444 1348 1503 UF: sat 764 896
FOF+CNF: unsat - - 1337 1628 UF: unsat - 249

therefore we can extend the totality constraints to

b1(d1) 6= d1 ∨ b1(d1) 6= d2 ∨ |monkey | > 2

where the current size of monkey is 2. Conversely, if we
cannot satisfy a grounded input clause then the size of s
may be too large and we can extend the grounding to

owns(c2, d1) ∨ b1(c2) 6= d1 ∨ |monkey | < 2

using the previous clause from our example.
After extending the encoding we solve the SAT problem

under the assumptions that we are using the correct sort
sizes, i.e. we add the following for each sort s

¬(|s| > 2) ∧ ¬(|s| < 2).

The mechanism for solving under assumptions, supported
by many SAT solvers, provides a subset of these assump-
tions sufficient to show unsatisfiability of the SAT problem.
This subset is our set of constraints that explains why this
check failed.

Using Constraints To use these constraints to guide the
search we use an SMT solver to find a model of the con-
straints. This model will assign a value to each domain
size, giving us the next SAT problem to check. To ensure
that this search grows appropriately we add the additional
constraint that the sum of the sort sizes must initially equal
the number of sorts. If no model can be found with this
constraint then we add one to this value and try again.

5 More Fun with Sorts

We can do various other things in an attempt to improve this
search for the right combination of sort sizes.

Monotonic Sorts A sort s is monotonic for a formula ϕ
if adding another domain constant to s in a model of ϕ pro-
duces another model for ϕ (see [1]). Monotonic sorts can
be easily detected and used in a number of ways.

Collapsing Sorts All monotonic sorts can be treated as
a single sort. This reduces the size of the search space.
However, if one of these sorts needs to be very large then all
sorts will need to grow, potentially unnecessarily increasing
the size of the SAT encoding.

Expanding Subsorts Alternatively, one can infer sub-
sorts by identifying function and predicate positions that
are disjoint with respect to variables. If these subsorts are
monotonic then they can be treated as real sorts, with the
constraint that they do not grow larger than their parent sort.

More Constraints It is possible to detect constraints be-
tween sorts due to (for example) an injective function from
one sort to another. To detect such properties we adapt a
standard saturation algorithm to use a single proof attempt
to prove as many of these relationships as possible.

6 No Finite Model

There are cases where we can establish upper bounds on the
size of a sort e.g. when it only uses constant symbols. These
can be treated as additional constraints. If the resultant set
of constraints is unsatisfiable without the previous restric-
tion on sort sizes (that they sum to some number) then there
is no model and the problem is unsatisfiable.

7 Experiments and Concluding Remarks

Table 1 gives a brief summary of the experimental results
reported in [5]. Two sets of experiments are described. The
first considers unsorted TPTP problems and applies sort ex-
pansion. The second considers SMT-LIB problems from
the Uninterpreted Functions logic and applies monotonic
sort grouping. The new techniques perform better than the
other leading tools for finite model finding.

Future work involves introducing further heuristics for
symmetry breaking and search. One option is to explore
incomplete search strategies that skip parts of the search
space; sacrificing finite model completeness for efficiency.
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SENSOR INTELLIGENCE FOR TACKLING ENERGY-DRAIN 

ATTACKS ON WIRELESS SENSOR NETWORKS 
 

Ekereuke Udoh, Vladimir Getov, Alexander Bolotov 
Distributed and Intelligent Systems Research Group 

University of Westminster, 115 New Cavendish Street, London W1W 6UW 

w1562173@my.westminster.ac.uk, V.S.Getov@westminster.ac.uk, A.Bolotov@westminster.ac.uk 
 

Abstract. In this paper we propose a model for intelligent agents (sensors) on a Wireless Sensor Network to guard 
against energy-drain attacks in an energy-efficient and autonomous manner. This is intended to be achieved via an 

energy-harvested Wireless Sensor Network using a novel architecture to propagate knowledge to other sensors 

based on automated reasoning from an attacked sensor. 

  Introduction. Wireless Sensor Networks (WSN) form part of the architecture of the Internet of Things 
(IoT) and are known particularly for their resource-constrained nature due to the fact that these sensors are usually 

powered by batteries alongside their low processing power. This makes the WSN prone to energy-drain attacks, 

one of which is known as denial-of-sleep attack [1]. A number of approaches exists which aim to tackle these 

attacks; however these approaches rarely take into consideration the future scale of the IoT as predicted to expand 

exponentially in the coming years [2]. The implication of this is that approaches would need to be, not just energy-

efficient but, autonomous in nature in order to withstand the variety of attacks that may arise as a result of a larger 

network where there is a wider attack surface. 

Proposed Approach. The intended approach is an improvement of existing approaches - Gateway 

Media Access Control (GMAC) and Hierarchical Collaborative Model (HCM). While GMAC [3] and the hash-

based scheme [4] use centralized approach via cluster heads, HCM [5] and the distributed wake-up scheme [6] use 

a distributed architecture. Although these approaches seem very useful, they do not take into consideration the size 
of the network especially on a large scale. Our proposed architecture is based on a combination of both the 

centralized and the distributed approach. It would involve the use of intelligent agents whereby each sensor 

becomes an agent which can sense data and take responsive action with the workload dynamically distributed 

among them. However, this would not function optimally with the current battery-powered sensors, but rather an 

energy harvested IEEE 802.15.4 wireless sensor network [2]. This is necessary because the dynamic distribution 

would lead to an increase in processing power thereby consequently increasing energy costs. In [7], the concept of 

virtual clusters is introduced whereby nodes are grouped into the same subnet and presented as a single resource. 

The WSN will be dynamically divided into clusters with cluster heads appointed for each cluster. In this approach, 
if a sensor encounters or senses an attack, it immediately takes responsive action and also broadcasts the 

information to the rest of the appointed cluster heads via a “rumour” approach which may consume more 

bandwidth than processing power. The “rumour” approach is coined from the term “routing by rumour”, which 

explains the semantics of distance-vector routing protocols whereby each router sends messages to its nearest 
neighbour until the information propagates to all the routers. In this case, the cluster heads send information to the 

nearest cluster head and it continues that way until the information gets to all the cluster heads which then pass the 

information to their clusters. The cluster heads then relay this information to the sensors in their clusters. 

  High Level Constituents of the Approach 

 Automated reasoning via intelligent agents 

In [8] a management scheme based on automated reasoning whereby Bayesian reasoning is used during the 

learning phase, is proposed to help protect against intrusions and also enhance energy-efficiency on a 

wireless sensor network. Threshold analysis is also used prior to the reasoning. In [9], the BayesMob 

algorithm is used for self-healing in a case where one or more sensor nodes fail. In this paper, we consider 
the Bayesian equation for predictive reasoning by sensors as a way of anticipating an attack and preventing it 

beforehand. More specifically, our model is based on the following Bayesian equation: 
 

, 

where A and B are events 

- P (A) and P (B) are the probabilities of A and B without regard to each other. 

- P (A | B), a conditional probability, is the probability of observing event A given that B is true. 

- P (B | A) is the probability of observing event B given that A is true. 

In this context, for example, P (A) is the base rate or prior probability that a sensor is under attack. This 

could be based on a threshold value of the amount of energy being consumed by the sensor. P (B) could be 

the probability that the messages sent by the attacker have a certain size/frequency range. P (B|A) would 
then be the probability that a sensor under attack is receiving a certain message size/frequency range. 

 Choice of WSN architecture  

A combination of centralized and distributed architecture is proposed. The centralized approach involves the 

use of clusters which are formed dynamically based on the location and proximity of sensors. Each cluster 
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has a cluster head which not only serves the other sensors but also acts as a proxy thereby hiding the identity 

of the sensors. At the cluster level, a single-hop architecture is used while a multi-hop architecture is used for 
communication between cluster heads. Because of its centralized approach, the single-hop architecture has 

low delay and a high channel capacity, while the multi-hop architecture which is distributed in nature has a 

high energy-efficiency and high signal-to-noise ratio [12]. 

 Resource availability (via energy-harvesting rather than battery-powered sensors) 

In [10], a relationship between autonomy and energy-efficiency is established whereby existing wireless 
sensor networks are limited by their battery power and therefore cannot be autonomous except more power is 

made available to them. Hence, energy-harvesting is proposed. In [11], the need for energy harvesting is also 

acknowledged considering that the existing battery-powered sensor nodes need periodic maintenance which 

contradicts with the characteristics of autonomous systems. 

 

Figure 1: Proposed Wireless Sensor Network Architecture for Intelligent Agents (Sensors) 

Figure 1 above shows an attack being directed at a cluster head. The cluster head (CH) is an intelligent agent and 
also acts as a proxy for the member-nodes of its cluster. The moment it realizes it is under attack, it appoints one of 

its members as a cluster head and isolates itself from the network thereby allowing communication to continue. 

The learned information is then passed to other cluster heads to enable them to easily prevent the attack, in case 

they become the new target. 

Conclusions. Our novel architecture is intended to fit into the big picture of providing an energy-

efficient and autonomous security on the IoT. Currently, the proposed approach is being tested on a simulator and 

the results will be analysed and discussed in the context of energy-efficiency and other existing approaches. 
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Probabilistic Verification of an Ant-Based Swarming Algorithm
Paul Gainer Clare Dixon Ullrich Hustadt

Department of Computer Science, University of Liverpool
Liverpool, L69 3BX – United Kingdom

{P.Gainer, CLDixon, U.Hustadt}@liverpool.ac.uk

Abstract: Control algorithms for robot swarms are often inspired by decentralised problem/solving systems
found in nature. In this paper we conduct a formal analysis of an algorithm inspired by the foraging behaviour
of ants, where a swarm of flying vehicles searches for a target at some unknown location. We give the results
of checking probabilistic temporal properties that complement simulation results, and would facilitate the
logistics of swarm deployment.

1 Introduction

A robot swarm is comprised of some number of simple,
homogeneous robots, working together to achieve objec-
tives in some environment without centralised control [5].
Coordination between members of the swarm is achieved
through self-organisation and local interactions.

Swarm behaviours are generally analysed through simu-
lation and observations of real implementations. The for-
mal analysis of swarm behaviours can complement the de-
sign of swarm algorithms by revealing potential problems
that may go unnoticed by empirical analysis [1].

A common approach in swarm robotics has been to de-
velop control algorithms based on abstractions of natural
systems. In particular, much work has been conducted to
develop control algorithms based on the behaviours of so-
cial insects. In [3] a swarm of Micro Air Vehicles (MAVs)
attempts to form a communication pathway between multi-
ple ground users in a disaster area. The control algorithm
for each MAV is inspired by the stigmergic foraging be-
haviour of army ants which maintain pheromone paths be-
tween their nest and food sources.

We have applied probabilistic temporal verification to the
scenario presented in [3], generating paramaterized formal
models for the probabilistic model checker PRISM, which
we use to either exhaustively or statistically test probabilis-
tic reachability and reward-based properties. We demon-
strate how values pertaining to the logistics of deployments
of swarms of MAVs, that would be unobtainable through
simulation alone, can be calculated by exhaustively check-
ing reward-based properties in the models.

This extended abstract gives an overview of the scenario
and presents the results of checking probabilistic temporal
logic properties in the models.

2 Scenario

The scenario to which we apply probabilistic model check-
ing is presented in [3]. Here, a simulated swarm of MAVs is
deployed in order to establish a robust emergency commu-
nication network between a target user, situated at some un-
known location, and the base station wherefrom the swarm
is launched.

Figure 1 shows a Y-junction grid consisting of possible
positions that MAVs will ideally adopt in their search for
the target user. MAVs are launched at regular intervals from
position (0, 0) on the grid, and are in the exploring state.
In the exploring state a MAV navigates through the grid.
When a MAV reaches a position in the grid where there is
no other MAV it will change to the node state and remain at
that position, acting as a platform upon which other MAVs
can “deposit” virtual pheromone. When a MAV in the ex-
ploring state reaches a position in the grid where there is al-
ready a MAV in the node state, it continues moving outward
and makes a probabilistic choice on which branch to take,
determined by the levels of pheromone deposited at the next
positions on the left and right branches. Pheromone levels
dissipate gradually over time and when they are depleted
a MAV in the node state changes to the returning state. It
then navigates back through the grid towards the base node
similarly to a MAV in the exploring state.

3 Modelling

Models of the scenario were constructed using the prob-
abilistic model checker PRISM [4]. Given a probabilistic
model of a system, PRISM can be used to analyse both
temporal and probabilistic properties of the input model by
exhaustively checking some logical requirement against all
possible behaviours. Properties to be checked can be speci-
fied using probabilistic temporal logics such as Probabilis-
tic Computation Tree Logic (PCTL). PCTL consists of clas-
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Figure 1: The Y-junction
grid illustrating the ideal
positions for MAVs.
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sical logical operators, temporal operators,, and the proba-
bilistic operator P./γ(φ) where ./∈ {<,≤, >,≥} is a rela-
tional operator and γ is a probability threshold. PCTL can
therefore be used to specify properties such as P≥0.5(♦φ),
meaning “φ holds at some future point with a probability
of at least 0.5”. PRISM allows properties to be expressed
which evaluate to a numerical value, for instance P=?(♦φ),
“the probability of φ being true at some point in the future”.

PRISM can be used to reason about other measurable as-
pects of model behaviours. Rewards can be associated with
states and properties relating to expected values for these
rewards can be checked in models. The R operator allows
properties to be expressed such as the reachability reward
property R=?(♦φ), “what is the expected reward for reach-
ing a state where φ is true”.

In our models we consider only the moments in time
where each MAV is exactly at some ideal position (i, j).
Since MAVs are behaviourally identical we can use a count-
ing abstraction to record the number of MAVs at each loca-
tion. In addition we ignore the possibility of MAVs collid-
ing or getting lost. We refer the reader to [2] for a compre-
hensive description of the model.

4 Experiments

To validate our model we applied statistical model checking
using the PRISM discrete-event simulator and compared our
results to those obtained from the simulations conducted
in [3]. The mean probability of establishing contact with a
user within 30 minutes was calculated over a series of 500
simulations for varying swarm sizes. The target user was
located at some randomly determined location within a 60
degree arc in a known cardinal direction from the base node
at a distance of ≈200/500m.

Figure 2 compares the results of calculating the mean
probability over all locations of a MAV establishing con-
tact with the target user, to the results presented in [3].
Statistical model checking results were obtained using 500
discrete-event simulation samples with an average confi-
dence interval of ±2% based on a 99.0% confidence level.

0
1

2
3

4
5

6
0

5

10

distance (hm)

hours

N=5

0
1

2
3

4
5

6
0

20

40

distance (hm)

hours

N=7

0
1

2
3

4
5

6
0

2

4

distance (hm)

hours

N=10

0
1

2
3

4
5

6
0

2

4

distance (hm)

hours

N=20

Figure 3: Total expected times for swarms of size N to
establish communication with a user with probability 1.

By associating a reward of one with each state in our
models we can calculate the total time expected for the
swarm to establish contact with a user at (i, j) with prob-
ability 1. In Figure 3 we show the total expected time in
hours for a deployment of N MAVs to establish commu-
nication with the target user with a probability 1. Results
where N > 7 were obtained using statistical methods over
4000 samples.

5 Conclusions and Further Work

We have constructed formal probabilistic models making
some simplifying assumptions, and clearly shown a close
correspondence between these models and the simulations
conducted in the original scenario. We have checked both
probabilistic and reward-based properties in our model,
where the resultant calculated values could be used to plan
the deployment of a swarm of MAVs where establishing
contact with a user must be guaranteed, or achieved with a
probability that exceeds some given threshold.

We aim to further abstract our approach so that the
techniques that we have developed here can be applied
to a broader range of swarm algorithms where stigmergic
communication is used to coordinate the behaviour of the
swarm.
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Concept and Role Forgetting in ALCOIHµ+(O,u)-Ontologies
Yizheng Zhao Renate A. Schmidt

School of Computer Science, The University of Manchester, UK

Abstract: We revise a recently-developed method for forgetting of concept and role symbols in ontologies ex-
pressible in the description logicALCOIHµ+(O,u). Being based on an Ackermann approach, the method is
one of only few approaches that can eliminate role symbols, that can handle role inverse and ABox statements,
and is the only approach so far providing support for forgetting in description logics with nominals.

1 Introduction

Forgetting is a non-standard reasoning problem concerned
with creating restricted views for ontologies relative to sub-
sets of their initial signatures while preserving all logical
consequences up to the symbols in the restricted views. It
turns out to be a very useful technique in various tasks cru-
cial for effective processing and management of ontologies.
For example, forgetting can be used for ontology reuse, for
creating ontology summaries, for information hiding, for
computing logical difference between ontologies, for on-
tology debugging and repair, and for query answering.

Early work in the area primarily focused on forgetting
concept symbols, as role forgetting was realised to be sig-
nificantly harder than forgetting of concept symbols, be-
cause the result of forgetting role symbols often requires
more expressivity than is available in the target logic.

The contribution of this work is a practical method
for forgetting of concept and role symbols in expressive
description logics not considered so far. The method
accommodates ontologies expressible in the description
logicALCOIH and the extension allowing positive occur-
rences (µ+) of the least fixpoint operator µ, the top role O
and role conjunction u. The added expressivity has the ad-
vantage that it reduces information loss; for instance, the
solution of forgetting the role symbol r in the ontology
{A v ∃r.B, ∃r.B v B} is {A v ∃O.B,A v B}, whereas
in a description logic without the top role (or ABox axioms
or nominals) the solution is {A v B}, which is weaker.

Definition 1 (Forgetting in ALCOIHµ+(O,u)) Let O and O′
be ALCOIHµ+(O,u)-ontologies and let Σ be any subset of
sig(O). O′ is the solution of forgetting the Σ-symbols in O,
if the following conditions hold: (i) sig(O′) ⊆ sig(O) and
sig(O′) ∩ Σ = ∅, and (ii) for any interpretation I: I |= O′
iff I′ |= O, for some interpretation I′ Σ-equivalent to I.

2 The Forgetting Method

The forgetting process in our method consists of three
main phases: the reduction to a set ofALCOIHµ+(O,u)-
clauses, the forgetting phase and the definer elimination
phase (see Figure 1). In the forgetting phase, an analyser
may be used to generate forgetting orderings, �C and �R,
of the concept symbols and role symbols in Σ.

The input to the method is an ontology O of TBox and
RBox axioms expressible in ALCOIHµ+(O,u) (ABox

Convert to
set of clauses N

Transform to
r-reduced form

Ackermann
to forget r

Transform to
A-reduced form

Ackermann
to forget A

Elimination of
definer symbols

Ontology O

Forgetting
solution O′

AnalyserΣ = {S1, ...,S2} into

Σ
�R

Σ �
C

Figure 1: Overview of the forgetting method

axioms are assumed to be equivalently expressed as TBox
axioms in our method), and a set Σ with the concept and
role symbols to be forgotten. The first phase transforms the
input ontology O into a set N of clauses.

The forgetting phase is an iteration of several rounds in
which individual concept and role symbols are eliminated.
An important feature of the method is that concept symbols
and role symbols are forgotten in a focused way, i.e., the
rules for concept forgetting and the rules for role forget-
ting are mutually independent; concept and role symbols
can thus be forgotten in any order. In the forgetting phase,
if S ∈ Σ is a symbol to be forgotten, the idea is to transform
the S-clauses into S-reduced form, so that the forgetting
rules (the Ackermann rules) can be applied to eliminate S.
The conversion to S-reduced form is performed using the
rewrite rules in the underlying calculi of our method, which
can be found in [4]. To provide crucial control and flexibil-
ity in how the steps are performed, auxiliary concept sym-
bols, called definer symbols, are introduced in the role for-
getting rounds. The final phase attempts to eliminate these
definer symbols via concept forgetting.

Previous research has shown that the success rates of for-
getting depend very much upon the order in which the Σ-
symbols are forgotten [1, 2, 3]. Our method either follows
the user-specified ordering, or it uses a heuristic analysis
based on frequency counts of the Σ-symbols to generate
good orderings. We refer to the maximal symbol of Σ w.r.t.
the forgetting ordering � as the pivot in our method.
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Non-Cyclic AckermannC

N , C1 tA, . . . , Cn tA
NA
¬C1t...t¬Cn

provided: (i) A does not occur in the Ci, and (ii) N is neg-
ative w.r.t. A.

Cyclic AckermannC

N , C1[A] tA, . . . , Cn[A] tA
NA
µX.(¬C1t...t¬Cn)[X]

provided: (i) the Ci are negative w.r.t. A, and (ii)N is neg-
ative w.r.t. A.

PurifyC

N
NA

(¬)>
provided: N is positive (negative) w.r.t. A.

Figure 2: Rules for forgetting pivot A ∈ NC

Theorem 1 For any ALCOIHµ+(O,u)-ontology O and any
set Σ ⊆ sig(O) of symbols to be forgotten, the method always
terminates and returns a set O′ of clauses. If O′ does not contain
any Σ-symbols, the method was successful. O′ is then a solution
of forgetting the symbols in Σ from O. If neither O nor O′ uses
fixpoints, O′ is Σ-equivalent to O in ALCOIH(O,u). Other-
wise, it is Σ-equivalent to O in ALCOIHµ+(O,u).

3 The Forgetting Rules

Let NC and NR be sets of concept symbols and role symbols.

Definition 2 (A-Reduced Form) For A ∈ NC, a clause is in A-
reduced form if it is negative w.r.t. A, or it has the form A t C,
where C is an ALCOIHµ+(O,u)-concept that does not have
any occurrences ofA, or is negative w.r.t.A. A setN of clauses is
in A-reduced form if every A-clause inN is in A-reduced form.

The (Non-)Cyclic AckermannC rules and the PurifyC

rule, given in Figure 2, are the forgetting rules that lead
to the elimination of concept symbols in a set of clauses.
For A ∈ NC the pivot and C a concept expression, NA

C

denotes the set obtained from N by replacing every occur-
rence of A by C. The (Non-)Cyclic AckermannC rules are
applied only if N is in A-reduced form. The PurifyC rule
can be applied anytime provided A is pure in N , i.e., every
occurrence of A inN is positive or negative (under an even
number of explicit and implicit negations or otherwise).

Definition 3 (r-Reduced Form) For r ∈ NR, a clause is in r-
reduced form if it has the form C t ∀r.D or C t ¬∀r u Q.D,
where C and D are concepts that do not contain any occurrence
of r and Q is a role that does not contain any occurrence of r; or
it has the form ¬S t r or S t ¬r, where S is a role symbol or an
inverted role symbol. A set N of clauses is in r-reduced form if
every r-clause inN is in r-reduced form.

Finding the r-reduced form of a clause is not always pos-
sible, unless definer symbols are introduced. Definer sym-
bols are specialised concept symbols that do not occur in
the present ontology, and are introduced as follows: given
a clause of the form C t ∀r(−).D or C t ¬∀r(−).D, with

AckermannR

N , C1 t ¬∀r uQ1.D1, . . . , Ck t ¬∀r uQk.Dk ,

¬T 1 t r, . . . ,¬Tu t r ,
C1 t ∀r.D1, . . . , Cm t ∀r.Dm,

¬r t S1, . . . ,¬r t Sn
N , T -BlockH(1,m), . . . , T -BlockH(k,m) ,

R-BlockC(1,m), . . . ,R-BlockC(u,m) ,

R-BlockR(1, n), . . . ,R-BlockR(u, n)

provided: (i) r does not occur in N , and (ii) N is in r-
reduced form.

PurifyR

N
N r

(¬)O
provided: N is positive (negative) w.r.t. r.

Notation in the AckermannR rule (1 ≤ j ≤ k, 1 ≤ l ≤ u):
T -BlockH(j,m) denotes the set

{Cj t CY t ¬∀Hj .(Dj tDY )|Y ⊆ [m]}, where

CY =




¬> if Y = ∅⊔
i∈Y

Ci otherwise, D
Y =




¬> if Y = ∅⊔
i∈Y
¬Di otherwise,

and H =

{
S1 u . . . u Sn uQj if P−R 6= ∅
O uQj otherwise.

R-BlockC(l,m) denotes the set

{C1 t ∀T l.D1, . . . , Cm t ∀T l.Dm}.
R-BlockR(l, n) denotes the set {¬T ltS1, . . . ,¬T ltSn}.

Figure 3: Rules for forgetting pivot r ∈ NR

r being the pivot and occurring in Q ∈ {C,D}, the definer
symbols are used as substitutes, incrementally replacing C
and D until neither contains any occurrences of r. A new
clause ¬D t Q is added to the clause set for each replaced
subconcept Q, where D is a fresh definer symbol.

Given a set N of clauses with r ∈ NR being the pivot,
once N has been transformed into r-reduced form, we ap-
ply the AckermannR rule given in Figure 3 to eliminate r.
The PurifyR rule can be applied anytime provided r is pure.
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Rewriting ALC-TBoxes of Depth One via Resolution
Fabio Papacchini

Department of Computer Science, University of Liverpool, Fabio.Papacchini@liverpool.ac.uk

Abstract: Former studies show that there exists a class of ALC-TBoxes of depth one (i.e., with no nested
role restrictions) such that answering conjunctive queries is in PTIME in data complexity. We propose ideas
on how to rewrite such TBoxes into Horn-ALC-TBoxes of depth one via a resolution-based approach.

1 Introduction

Ontology-based data access (OBDA) has received particu-
lar attention from the research community in the last years.
When enhancing query answering by the use of an ontol-
ogy, one of the most natural questions arising is ‘how does
the ontology affect the complexity of query answering?’.
Studies focusing on a wide variety of ontology languages
and queries show that query answering becomes easily in-
tractable. This is the case, for example, for the ALC lan-
guage, where the worst-case data complexity it is known to
be CONP-COMPLETE when answering conjunctive queries
(CQs). It is, however, possible to identifyALC-TBoxes for
which CQ answering is tractable by adopting a fine-grained
approach.

[2] shows that for ALC-TBoxes of depth one (i.e., with
no nested role restrictions) there exists a P/CONP di-
chotomy, and it presents a semantic characterisation for
TBoxes where CQ answering is in PTIME. Specifically, [2]
proves the equivalence between materialisability, unravel-
ling tolerance and the ABox disjunction property for ALC-
TBoxes of depth one, and that CQ answering in the pres-
ence of these properties is in PTIME for data complexity.
For the purpose of this abstract we give only the formal
definition of the ABox disjunction property, and we refer
to [2] for the other definitions. A TBox T has the ABox
disjunction property if for all ABoxes A and EL concepts
C1, . . . , Cn, it follows from (T ,A) |= C1(a1) ∨ . . . ∨
Cn(an) that (T ,A) |= Ci(ai) for some i ≤ n. We re-
call that an EL concept is any concept built from ∃, u, >,
and any concept name A.

Recent results of our research show that for ALC-
TBoxes of depth one the ABox disjunction property
can be made stronger by requiring the Ci to be of at
most depth one, and that it is enough to check the
ABox disjunction property over ABoxes that can be ex-
pressed as a depth one EL assertion. For example,
the ABox {A(a), r(a, b), B(b), B′(b)} can be represented
as (A u ∃r.(B uB′))(a).

2 Resolution Calculus

The idea of adopting a resolution-based method as a rewrit-
ing procedure is not new, e.g. [1].

We indicate literals by L, where L := A | ¬A, a possibly
empty disjunction of literals by Ct orDt, a possibly empty
conjunction of literals by Cu or Du. In this context, arbi-

trary concepts C and D are of the form C := L | ∀r.Ct |
∃r.Cu. Finally, we indicate the complement by an overline
(e.g., L is the complement of a literal, Cu is the complement
of a conjunction of literals).

As the procedure is a resolution-based procedure, the in-
put is a set of DL clauses. The set of clauses is computed
using the common CNF transformation, with the proviso
that ∀r is distributed over conjunctions and ∃r is distributed
over disjunctions. Given the aforementioned definitions, a
clause is just a disjunction of arbitrary concepts, and we
indicate clauses by C and D. This normal form and repre-
sentation of clauses is possible because we assume the input
to be an ALC-TBox of depth one.

To simplify the calculus we assume that any clause in
the calculus does not present any repetition, neither in a
disjunction nor in a conjunction. Table 1 shows the rules of
the resolution calculus, which we call Res.

Subsumption between clauses can be defined on a com-
pletely syntactic level. First, let us define an ordering be-
tween role restricted concepts. We say that ∀r.Ct � ∀r.Dt
if Ct ⊆ Dt, and that ∃r.Cu � ∃r.Du if Du ⊆ Cu. We
indicate that a clause C subsumes a clause D by C � D.
C � D holds if either

• for all L ∈ C it is the case that L ∈ D,

• for all ∃r.Cu ∈ C there exists ∃r.Du ∈ D s.t. ∃r.Cu �
∃r.Du, and

• for all ∀r.Ct ∈ C there exists ∀r.Dt ∈ D s.t. ∀r.Ct �
∀r.Dt,

or,

C = L1t. . .tLn and ∀r.(L1t. . .tLm) ∈ D where m ≥ n.

A clause is redundant if it is subsumed or it is a tautology.
Clause simplification is applied during the saturation pro-

cess, and we indicate the exhaustive application of simpli-
fication rules to a clause C by SIMP(C). Apart from the
common simplification rules (e.g., removing ∃r.⊥ from a
clause), two rules need to be illustrated. First,

(Cond)
C t ∀r.Ct t ∀r.C′t
C t ∀r.C ′t

Ct ⊆ C ′t .

The (Cond) rule represents a condensation step. The first-
order translation helps to illustrate the purpose of the rule.
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(BR)
C t C C t D

C t D (∀⊥) C t ∀r.⊥ ∃r.Du t D
C t D

(BR∀) Ct t L D t ∀r.(L t Dt)
D t ∀r.(Ct t Dt)

(BR∃)
⊔

i Li t L C t ∃r.(L u Cu)
C t⊔i ∃r.(Li u Cu)

(∀∀) C t ∀r.(Ct t L) D t ∀r.(L t Dt)
C t D t ∀r.(Ct t Dt)

(∀∃) C t ∀r.(
⊔

i Li t L) D t ∃r.(L u Du)
C t D t⊔i ∃r.(Li u Du)

Table 1: Rules of the resolution calculus Res

Consider as an example the clause ∀r.(A t B) t ∀r.(A t
B t C), its first-order translation is as follows.

¬r(x, y)∨A(y)∨B(y)∨¬r(x, z)∨A(z)∨B(z)∨C(z)
A first-order prover would substitute y with z, and then

apply factoring as much as possible. The resulting clause
would be ¬r(x, z)∨A(z)∨B(z)∨C(z), which subsumes
the original one. The (Cond) rule performs exactly the
same simplification.

Second,

(Taut)
C t ∀r.Ct t ∃r.Cu

> Cu ⊆ Ct .

The (Taut) rule recognises particular tautologies, and it is
necessary for the second step of our procedure. The idea
behind this rule is that a clause such as ∀r.(AtB)t∃r.¬A
is equivalent to the TBox axiom ∃r.(¬A u ¬B) v ∃r.¬A,
where its tautological nature is more evident.

Given a set N of DL clauses, we indicate by Res∗�(N )
the saturation ofN w.r.t. Res and the redundancy criterion.

Claim 1. Let N be a set of DL clauses of an ALC-TBox
of depth one. Then Res∗�(N ) contains all non-redundant
consequences of N with depth less or equal one.

Soundness of the calculus can be easily proved, and refu-
tational completeness of Res∗� follows from Claim 1.

Claim 2. N is unsatisfiable iff ⊥ ∈ Res∗�(N ).

Claim 3. Res∗�(N ) terminates for any set N of clauses.
(There are only exponentially many non redundant conse-
quences of depth one.)

3 Procedure

Let us define a function POS as follows.

POS(C) =

{
∃r.dAi if C = ∃r.Cu and Ai ∈ Cu
C otherwise

The POS function can be extended to clauses.
Let N be the set of DL clauses resulting from an ALC-

TBox of depth one. The procedure is divided into two parts.
First, the resolution calculus Res is exhaustively applied
toN , resulting in the set S = Res∗�(N ). Second, let S+ =

{C | C =SIMP(POS(C′)), C′ ∈ S}, and let S+
� be the result

of applying redundancy elimination to S+.

Claim 4. Let T be an ALC-TBox of depth one. T has the
ABox disjunction property iff any clause C ∈ S+

� is a Horn-
clause.

The intuition for Claim 4 is as follows. First, any clause
in S+

� can be rewritten as a TBox axiom C v D where C is
an EL concept. (⇒) Take a non-Horn clause in S+

� , build
an ABox A from the left hand-side of its TBox represen-
tation, and prove that the ABox disjunction property fails
on A. (⇐) If the ABox disjunction property fails on an
ABox A, then there exists a non-Horn clause in S∗�.

Claim 5. Let T be an ALC-TBox of depth one. If T has
the ABox disjunction property, then S+

� is a Horn rewriting
preserving CQ-answering.

4 Conclusion

The ideas proposed in this abstract represent a possible syn-
tactic characterisation for ALC-TBoxes of depth one for
which CQ answering is tractable. Due to the normal form
transformation and the size of the resulting set of clauses,
the procedure is double exponential in the size of the orig-
inal TBox. This result agrees with the upper bound we ob-
tained via a different approach. Evaluations of BioPortal
ontologies1, however, shows that the normal form transfor-
mation does not usually result in a substantial increase in
size.
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Abstract: We study translations from Metric Temporal Logic (MTL) over the natural numbers to Linear
Temporal Logic (LTL). In particular, we present two approaches for translating from MTL to LTL which
preserve the EXPSPACE complexity of the satisfiability problem for MTL. Our translations, thus, allow us to
utilise LTL provers to solve MTL satisfiability problems.

1 Introduction

Linear and branching-time temporal logics have been used
for the specification and verification of reactive systems.
In linear-time temporal logic [4] we can, for example, ex-
press that a formula ψ holds now or at some point in the
future using the formula ♦ψ (ψ holds eventually). However,
some applications require not just that a formula ψ will hold
eventually but that it holds within a particular time-frame
for example between 3 and 7 moments from now. To ex-
press metric constraints, a range of Metric Temporal Logics
(MTL) have been proposed, considering different underlying
models of time and operators allowed [3]. Here we use MTL
with pointwise discrete semantics, following [1], where each
state in the sequence is mapped to a time point on a time
line isomorphic to the natural numbers. In this instance of
MTL, temporal operators are annotated with certain finite as
well as infinite intervals, for example, 2[2,4]p means that p
should hold in all states that occur between the interval [2, 4]
of time, while 2[2,∞)p means that p should hold in all states
that occur at least 2 moments from now. We provide two sat-
isfiability preserving translations from MTL into LTL. Both
translations are polynomial in the size of the MTL formula
and the largest constant occurring in an interval (although
exponential in the size of the MTL formula due to the binary
encoding of the constants). Since the satisfiability problem
for LTL is PSPACE [5], our translations preserve the EX-
PSPACE complexity of the MTL satisfiability problem [1].

2 Metric Temporal Logic Translations

We briefly state the syntax and semantics of LTL and MTL.
Let P be a (countably infinite) set of propositional symbols.
Well formed formulae in LTL are formed according to the
rule: ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #ϕ | (ϕUψ) where p ∈ P .

LTL Semantics. A state sequence σ over (N, <) is an
infinite sequence of states σi ⊆ P , i ∈ N.

(σ, i) |= p iff p ∈ σi
(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ
(σ, i) |= #ϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= (ϕUψ) iff there is k ≥ i such that

(σ, k) |= ψ and for all j ∈ N,
if i ≤ j < k then (σ, j) |= ϕ

We denote by #c a sequence of c next operators. Fur-
ther connectives can be defined as usual: p ∨ ¬p ≡ true,
true ≡ ¬(false), trueUϕ ≡ ♦ϕ and ♦ϕ ≡ ¬2¬ϕ. MTL
formulae are constructed in a way similar to LTL, with the
difference that temporal operators are now bounded by an
interval I with natural numbers as end-points or∞ on the
right side. Note that since we work with natural numbers
as end-points we can assume w.l.o.g that all our intervals
are of the form [c1, c2] or [c1,∞), where c1, c2 ∈ N. Well
formed formulae in MTL are formed according to the rule:
ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #Iϕ | (ϕUIψ) where p ∈ P .

MTL Semantics. A strict timed state sequence ρ = (σ, τ)
over (N, <) is a pair consisting of an infinite sequence σ of
states σi ⊆ P , i ∈ N, and a function τ : N→ N that maps
every i corresponding to the i-th state to a time point τ(i)
such that τ(i) < τ(i+ 1).

(ρ, i) |= #Iϕ iff (ρ, i+ 1) |= ϕ and
τ(i+ 1)− τ(i) ∈ I

(ρ, i) |= (ϕUIψ) iff there is k ≥ i such that
τ(k)− τ(i) ∈ I and (ρ, k) |= ψ
and for all j ∈ N, if i ≤ j < k
then (ρ, j) |= ϕ

We omit propositional cases, which are as in LTL. Fur-
ther connectives can be defined as usual: trueUIϕ ≡ ♦Iϕ
and ♦Iϕ ≡ ¬2I¬ϕ. To transform an MTL formula into
Negation Normal Form, one uses the constrained dual until
ŨI operator [3], defined as (ϕŨIψ) ≡ ¬(¬ϕUI¬ψ). An
MTL formula ϕ is in Negation Normal Form (NNF) iff the
negation operator (¬) occurs only in front of propositional
variables. An MTL formula ϕ is in Flat Normal Form (FNF)
iff it is of the form p0∧

∧
i 2[0,∞)(pi → ψi) where p0, pi are

propositional variables or true and ψi is either a formula
of propositional logic or it is of the form #Iψ1, ψ1UIψ2 or
ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.
The transformations into NNF and FNF are satisfiability
preserving and can be performed in polynomial time. From
now on assume that our MTL formulae are in NNF and FNF.

From MTL to LTL: encoding ‘gaps’ We translate MTL
formulae for discrete time models into LTL using a new
propositional symbol gap. ¬gap is true in those states σ′j
of σ′ such that there is i ∈ N with τ(i) = j and gap is
true in all other states of σ′. As shown in Table 1, we
translate for example #[2,3]p into:

∨
2≤l≤3(#l(¬gap∧ p)∧
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MTL LTL Gap Translation

(#[c1,∞)α)
] (

∧
1≤k<c1

#kgap)

∧ #c1(gapU(α ∧ ¬gap))
(#[c1,c2]α)

] ∨
c1≤l≤c2

(#l(¬gap ∧ α)
∧∧

1≤k<l #kgap)

(αU[c1,∞)β)
] (

∧
0≤k<c1

#k(gap ∨ α))
∧ #c1((gap ∨ α)U(¬gap ∧ β))

(αU[c1,c2]β)
] ∨

c1≤l≤c2
(#l(¬gap ∧ β)
∧∧

0≤k<l #k(gap ∨ α))

Table 1: MTL to LTL translation using ‘gap’ where α, β are
propositional logic formulae and c1, c2 > 0.
∧

1≤k<l #kgap).

Theorem 1. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an

MTL formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi →

(¬gap ∧ ψ]i )) be the result of replacing each ψi in ϕ by
ψ]i as in Table 1. Then, ϕ is satisfiable if, and only if,
ϕ] ∧ ¬gap ∧2(♦¬gap) is satisfiable.

From MTL to LTL: encoding time differences Let C − 1
be the greatest number occurring in an interval in an MTL
formula ϕ or 1, if none occur. W.l.o.g., we can consider
only strict timed state sequences where the time difference
from a state to its previous state is bounded by C [2]. Then,
we can encode time differences with a set Πδ = {δ−i | 1 ≤
i ≤ C} of propositional variables where each δ−i represents
a time difference of i w.r.t. the previous state (one could
also encode the time difference to the next state instead of
the difference from the previous state). We also encode
variables of the form snm with the meaning that ‘the sum
of the time differences from the last n states to the current
state is m’. For our translation, we only need to define these
variables up to sums bounded by 2 · C.

To simplify the presentation, we use two additional n-ary
boolean operators ⊕=1 and ⊕≤1. If S = {ϕ1, . . . , ϕn} is
a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn), also
written ⊕=1S, is a LTL formula. Let σ′ be a state sequence
and i ∈ N. Then (σ′, i) |= ⊕=1S iff (σ′, i) |= ϕj ∈ S for
exactly one ϕj ∈ S, 1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S
iff (σ′, i) |= ϕj ∈ S for at most one ϕj ∈ S, 1 ≤ j ≤ n.
Let SC be the conjunction of the following:

1. #2⊕=1 Πδ , for Πδ = {δ−k | 1 ≤ k ≤ C};

2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;

3. 2⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {sij | i ≤ j ≤
2 · C};

4. 2(#s1k ∧ sjl → #sj+1
l+k ), for 1 < j+ 1 ≤ l+k ≤ 2 ·C.

Point 1 ensures that at all times, the time difference k
from the current state to the previous (if it exists) is uniquely
encoded by the variable δ−k . In Point 2 we have that the sum
of the difference of the last state to the current, encoded by

MTL LTL Time Difference Translation

(#[c1,∞)α)
] #((

∨
c1≤i≤C δ

−
i ) ∧ α)

(#[c1,c2]α)
] #((

∨
c1≤i≤c2

δ−i ) ∧ α)
(αU[c1,∞)β)

] ∨
1≤i≤c1

(#i((
∨

c1≤j≤c1+C sij) ∧ αUβ)
∧ (

∧
0≤k<i #kα))

(αU[c1,c2]β)
] ∨

1≤i≤c2
(#i((

∨
c1≤j≤c2

sij) ∧ β)
∧ (

∧
0≤k<i #kα))

Table 2: MTL to LTL translation where α, β are proposi-
tional logic formulae and c1, c2 > 0.

s1k, is exactly δ−k . Point 3 ensures that at all times we cannot
have more than one value for the sum of the time differences
of the last i states. Finally, Point 4 has the propagation of
sum variables: if the sum of the last j states is l and the time
difference to the next is k then the next state should have that
the sum of the last j+ 1 states is l+ k. As shown in Table 2,
we translate, for example, #[2,3]p into #((δ−2 ∨ δ−3 ) ∧ p).

Theorem 2. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL

formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i )

be the result of replacing each ψi in ϕ by ψ]i as in Table 2.
Then, ϕ is satisfiable if, and only if, ϕ] ∧ SC is satisfiable.

3 Conclusion

We presented two translations from MTL to LTL. These
translations provide a route to practical reasoning about
MTL over natural numbers via LTL solvers. Our second
translation and the MTL decision procedure presented in [1]
are based on time differences and use the bounded model
property. However, the translations using ‘gap’ do not re-
quire this property.
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Universal Algebra for Syntax with Bindings
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Abstract: This is a short outline of my Ph.D. project plans. This is a work in progress which aims at a
general theory of Syntax with Bindings, which will come together with a formalization in Isabelle/HOL and
some applications. The major contributions will be dealing with coinduction, infinite objects and generalized
notions of bindings.

1 Introduction

The central aim of the project we are here presenting is
to develop a framework for specification of, and reasoning
about, formal systems of relevance in computer science and
mathematical logic. We call “formal system” any logical
theory comprehending a syntax and some semantics; these
structures are heavily employed in modelling the seman-
tics of programming languages, type systems and logical
deduction.

Notably, the area of programming languages has seen
an explosion of formal systems aimed at capturing a wide
range of computational and logical analysis aspects. For ex-
ample, there is research in making programming languages
more secure and specification-conforming, reflected in a va-
riety of type systems (see Pierce’s monograph [5]) and for-
mal analysis tools, such as proof assistants , model checkers
, J-Flow and other security tools, CSP-based tools etc. All
this research relies on methodologies for rigorous, formal
reasoning and computation.

Even though formal systems come in a wide variety,
there are some fundamental mechanisms that seem com-
mon to all (or most) of them. These include the notions of
binding and scoping aimed at dealing with locality: a pro-
gram variable can be bound in a certain submodule (such as
a function or a procedure) or a logic variable can be bound
in the scope of a quantifier. Binding typically comes in pair
with the notion of instantiation or substitution. For exam-
ple, when a programming function is applied to a value,
its execution proceeds by instantiating its formal parameter
with that value and then evaluating the body of the function.
In formal logic, this corresponds to the notion of substitut-
ing a term for a variable. Often, the operational behaviour
of programs can be understood in terms of the interplay be-
tween bindings and instantiation/substitution. The laws that
govern this interplay obey certain patterns that can be con-
ceptualized in isolation from the particular language.

Another important aspect in formal systems is dealing
with infinite behaviour. A finite syntactic object may pro-
duce an infinite semantic object by unfolding (as in oper-
ational semantics) or by interpretation (as in denotational
semantics). The syntactic world is guided by bindings
and substitution, whereas, in mirror, the semantic world is
guided by functional objects and application. Likewise, the
syntactic world can be specified inductively, whereas the
semantic world is best describable coinductively.

Our work will contribute to the identification of such pat-
terns and their presentation as a general theory, in the style
of Universal Algebra, widely applicable for many formal
systems. This work will be guided by concrete applica-
tions, including well-known challenges in formal reasoning
and cases of notoriously difficult or tedious constructions.
We plan to validate and illustrate our results on concrete
case studies conducted in the proof assistant Isabelle/HOL
[1].

2 The General Framework

The starting point of this project is that formal systems
share a common syntactic structure. With the development
of a unifying theory for syntax with bindings we aim at
building a formalized framework, which can capture many
formal systems and constructions as particular instances.
In this section we sketch an embryonic version of the
syntactic part of this framework.

First we need to be given a set of sorts, which are spec-
ified when the framework is instantiated. The intuition is
that each object of the system is of a certain sort; if a sort is
allowed to contain variables, it is said a variable sorts.

Example. In simply typed lambda calculus there are just
two sorts, one for terms and one for types. As we need term
variables, terms (but not types) are elements of a certain
variable sort.

The next step is to populate our system. For every sort
we give some elements, terms, which will form the respec-
tive syntactic category. Usually some auxiliary objects are
given, as a base case; we call these the context. For ex-
ample, the context must contain a countably infinite set of
variables for every variable sort. The way we build every
other element is with a set of constructors, given for the
specific formal system. Every constructor comes with its
arity; here we must also declare which are the bound vari-
ables in which term.

In short, we have a set, the syntactic category, for every
sort, the elements of which are called terms and are defined
inductively by means of constructors.

Example. Let us consider the constructors of the simply
typed lambda calculus. The syntactic category Type of
types has one constructor b for each type constant and an-
other constructor→which takes two types and builds a type
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(the usual type of functions). The syntactic category Term
of terms contains as a subset a countably infinite set of vari-
ables. Its constructor are:

• a constructor for every term constant c;

• a constructor for applications, which from two terms
M and N builds a third one MN ;

• a constructor for abstractions, which binds a variable
x of a certain type σ in the term M , building the term
λx : σ.M .

As for inference systems, the theory of Nominal Logic
has already taken care of inductive ones [6], by means of
swapping, equivariance and freshness. For the coinductive
case however, such a general theory still need to be devel-
oped.

To conclude, it is worth mentioning that from this pre-
sentation it is possible to move a first automatic step into
the semantics of the formal system. First we need a domain
(a set) for every sort, in which we will interpret the terms
of that sort. If the sort is a variable sort we also need a val-
uation, namely a function that maps variables in elements
of the appropriate domain. To conclude we must have a
function for every constructor, in a way that the arity of the
function matches the arity of the constructor. Once we are
given these objects we can define the interpretation for ev-
ery term by structural recursion, with a standard treatment
for bindings.

3 Objectives

The central objective of our project is to develop a Univer-
sal Algebra for Syntax with Bindings, that improves on the
state of art.

The first step will be to develop a solid and unitary the-
ory, which addresses notoriously problematic features, es-
pecially substitution in terms modulo alpha equivalence,
and integrates syntax and semantics. Here the progress will
be in terms of generality, rigour and a formalization in Is-
abelle/HOL.

The universal theory I am proposing will also allow flex-
ible bindings, including recursively specified bindings (e.g.
records and patterns [2]).

While Nominal Logic [6] covers largely the theory for
inductive objects, there are no such comprehensive works
for coinductively defined objects involving bindings. More-
over our work will take care of codatatypes, and in general
objects with no finite support. This means that for these
it is not always possible to generate a fresh variable (i.e.
different from every other in the object) just because their
syntactic structure involves a finite number of variables. A
significant example of these structure are infinite trees, as
Bohm trees in Barendregt [3] or as the semantics naturally
associated to infinite terms by repeatedly unfolding.

In short, here the main goal is to achieve a formal general
treatment of infinite objects modulo α-equivalence and of
corecursion and coinduction for binding structures.

Our project will also provide some general result for
the denotational semantics of a generic formal system. In
particular it will capture in a general way the substitution
lemma and the fact that the interpretation of the term does
not depend on the valuation for the non-free variables in
that term.

Moreover, the framework is intended to grasp a more
complex notion of bindings, for example the recursive bind-
ing of the System F (as in the POPLmark document [2] and
in Pierce [5]). Here techniques from category theory will
be heavily involved, such as Bounded Natural Functors [7].

In terms of applications, for example this framework will
be suitable for a formalization of a real programming lan-
guage. Moreover it will give a tool for a general treatment
of adequacy in Higher Order Abstract Syntax, in contrast
with the current literature characterized by different solu-
tions to particular examples.

A deeper theory of binders could allow to faithfully rep-
resent the behaviour of actual bindings in languages such
as Java, and also provide a mathematical model to the phe-
nomenon of entanglement in quantum computing: we could
imagine a quantum system and indeed a quantum program
as a term of a certain syntax, in which the entanglement
link between two particles is represented by an appropriate
binding of two objects in the term.
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Abstract: We are interested in the verification of autonomous systems that use a rational agent to make
decisions. We discuss the use of model-checking to provide guarantees about the behaviour of such systems.

1 Introduction

Hybrid autonomous systems combine low-level control al-
gorithms with high level reasoning techniques from arti-
ficial intelligence. These systems control machines such
as cars, drones and robots that move and act on the phys-
ical world. Governments, industry and the public antici-
pate rapid advances in these areas over the coming decades,
particularly in the technologies for driverless cars, assis-
tive robots and unmanned aircraft and it is hoped that these
technologies will enrich the lives of many people, improve
safety and help alleviate the problems of an ageing popula-
tion. However the public is also anxious about such systems
and, in particular, the safety of such systems and their po-
tential capacity to make stupid decisions. For this reason,
the verification and validation of autonomous systems is an
area of active research.

In control engineering, autonomous systems are typically
described in terms of their sensors and their actuators. Sen-
sors provide the system with information about the state of
the external world such as temperature, speed, the distance
to any obstacle and so on. Actuators control the system’s
motors and, ultimately, its behaviour in the physical world.
Control engineering has developed many algorithms which
allow information from sensors to be used to determine the
behaviour of the actuators, often when controlling difficult
physical behaviours such as allowing a drone to hover in
position, or a robot to ride a bicycle. Symbolic Artificial
intelligence techniques are used when the system needs to
expand beyond single activities, to situations that involve
making choices or combining sequences of behaviours.

One technology for achieving this is rational agent pro-
gramming in which a decision problem is framed in terms
of the beliefs and desires of the system [9]. A rational agent
selects programmer supplied plans for execution based on
these beliefs and desires. In an autonomous system, the be-
liefs are derived from the information supplied by its sen-
sors, the desires are goals supplied by its users or program-
mers and the plans are described in terms of sequences of
actions which generally relate to algorithms in the underly-
ing control system – for instance following a flight path.

Fig. 1 provides a high level view of such a system.

2 Verification of a Single Decision Making Component

Given a system with an architecture similar to that in Fig. 1,
we can seek to verify the operation rational-agent based de-
cision making component in isolation [7, 4]. This is moti-

Rational Agent

decisions
[high-level, discrete]

e.g. reasoning, goal 
selection, prediction, 
cooperation, etc…

Autonomous System

Control System

control
[low-level, continuous]

e.g. manipulation, path 
following, reaction, 

obstacle avoidance, etc…

Fig. 1: A Rational Agent based Hybrid Autonomous Sys-
tem

vated partly by the difficulty involved in precisely reasoning
about continuous behaviour but also by the observation that
the decision-making component is the novel part of many
of these systems.

We are primarily interested in the use of model-checking
to verify that all executions of this component obey any
safety parameters. We have explored the use of program
model-checking using the AJPF system [5]. This lets us
verify the actual code used to program the system which is
a particularly attractive option when dealing with certifica-
tion issues.

In order to restrict our verification to just the decision-
making component we consider all possible sets of be-
liefs/perception that the agent may hold at each point in
time. We show that these always lead to the selection of
appropriate action by the agent. What we can not verify
is that the beliefs were a correct representation of the real
world, nor that the selected action has the desired effect. In
effect we verify that correct decisions are made given the
information available, but we do not verify the results of
those decisions nor the veracity of the information.

3 Verifying Interacting Decision Making Components

While the decision-making components often contains the
main novelty of an autonomous system it is important not
to underestimate the effect this may have on overall system
behaviour both in terms of a single autonomous system and
in situations where multiple autonomous systems interact.

To investigate this we have considered a vehicle platoon-
ing scenario in which several autonomous cars attempt to
form and maintain a platoon behind a car controlled by
a human driver. As well as formally verifying individual
agent/vehicle decisions, we also represented this system in
the UPPAAL model-checker [2] which, in particular, allows
the user to explore the real-time properties of a system. To
do this we abstract away from the code that programs the
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rational agents and represent their behaviour in a simple
protocol-like form which assumes the correct execution of
the individual agent programs.

We are then able to investigate whether the whole convoy
is able to meet various timing requirements. For instance,
given assumptions about the time taken to change lane, and
the time for requests to be made and acknowledgments to
be received we can verify that the time between a vehicle re-
questing entry to a platoon and it assuming its correct place
within the platoon falls within acceptable time bounds [8].

4 Verification of Ethical Governors

Model-checking does not scale well as systems and choices
increase. This is of concern in applications involving plan-
ning and scheduling (and, potentially, learning). Here we
may prefer to have a smaller tractable rational agent based
component concerned only with reasoning about parts of
the execution which have an ethical dimension.

For this we look at the idea of ethical governors [1]. We
view an ethical governor as a component that can act to
filter, prioritise or modify the plans or actions proposed by
an underlying autonomous system. It does this in order to
conform to ethical considerations. This type of architecture
is shown in Fig. 2.

Governor
Agent 

Autonomous 
System

proposed
action/plan

approve 
or reject

Fig. 2: A Governor Agent monitoring an Autonomous Sys-
tem

In this work the underlying system generates sets of plans
or actions and passes these to an Ethical Governor. The
governor evaluates the ethical outcomes of these plans or
actions and returns either the most ethical or some set of
ethically acceptable choices. We model the ethical gov-
ernor as a rational agent and this allows us to use model-
checking to verify the logic used by the ethical governor in
order to ensure that, for instance, it only chooses an option
in which a human is hurt if all other options had ethically
worse outcomes [3, 6].

5 Conclusion

This abstract has surveyed work on the verification of au-
tonomous systems. It has focused on the verification of sys-
tems which use a rational agent to make key decisions either
in general, or specifically as part of ethical reasoning. We
have focused primarily on the verification of these rational
agents considered separately from the wider autonomous
system but have also discussed preliminary work on how
properties of overall system behaviour can be verified.
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Abstract: We briefly present a new normal form and calculus for the propositional basic multimodal logic Kn.
We introduce the prover KSP that implements that calculus and methods for normal form transformation. We
present an experimental evaluation that compares KSP with a range of existing reasoners for Kn.

1 Introduction

Automatic theorem proving for the basic multimodal
logic Kn, the logic that extends propositional logic with
unary operators [a] and 〈a〉 for each index a in a finite set
A, has been intensely studied as it is able to express non-
trivial problems in Artificial Intelligence and other areas.
For instance, the description logic ALC, which has been ap-
plied to terminological representation, is a syntactic variant
of Kn. Problems in Quantified Boolean Propositional Logic
can also be translated into Kn. In this paper we briefly de-
scribe a new normal form and calculus for Kn, the prover
KSP implementing the calculus, and present an experimen-
tal evaluation of KSP.

2 A Normal Form and Calculus for Kn

In [6] we have presented a novel resolution-based calculus
for Kn. The calculus takes advantage of the following well-
known properties of basic modal logic: (i) if a modal for-
mula ϕ is satisfiable, then it is satisfiable in a Kripke model
where the union of the accessibility relations is a tree; and
(ii) in tree models, checking the local satisfiability of ϕ can
be reduced to checking the local satisfiability of its subfor-
mulae at the depth of a model with corresponds to the modal
level where those subformulae occur in ϕ.

The calculus operates on labelled clauses of the form
ml : C (literal clause), ml : l → [a]l′ (positive a-clause),
ml : l→ 〈a〉l′ (negative a-clause) where ml ∈ N ∪ {∗}, C
is a propositional clause, and l, l′ are propositional literals.
Intuitively, the label ml indicates the depth of the Kripke
model at which the clause is true. The special label ∗ is
used if a clause is true at all depths/worlds in a model and
it normally only occurs in the normal form if we want to
check a formula for global satisfiability instead of local sat-
isfiability. Any formula of Kn can be transformed into an
equi-satisfiable set of labelled clauses.

The calculus uses a simple form of unification. We
define a partial function σ on sets of labels as follows:
σ({ml, ∗}) = ml; and σ({ml}) = ml; otherwise, σ is
undefined. The rules of the calculus, shown in Table 1, can
only be applied if the unification of the labels involved is
defined.

[LRES] ml1 : C ∨ l
ml2 :D ∨ ¬l
ml : C ∨D

[MRES] ml1 : l1→[a]l
ml2 : l2→〈a〉¬l
ml :¬l1 ∨ ¬l2

[GEN1] ml1 : l
′
1 → [a]¬l1

...
mlm : l′m → [a]¬lm

mlm+1 : l
′ → 〈a〉¬l

mlm+2 : l1 ∨ . . . ∨ lm ∨ l
ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

[GEN2] ml1 : l
′
1 → [a]l1

ml2 : l
′
2 → [a]¬l1

ml3 : l
′
3 → 〈a〉l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3
[GEN3] ml1 : l

′
1 → [a]¬l1

...
mlm : l′m → [a]¬lm

mlm+1 : l
′ → 〈a〉l

mlm+2 : l1 ∨ . . . ∨ lm
ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

Table 1: Inference rules, where ml = σ({ml1,ml2}) in
LRES, MRES; ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1}) in
GEN1, GEN3; and ml = σ({ml1,ml2,ml3}) in GEN2.

3 KSP

KSP is an implementation, written in C, of the calculus in
Table 1. It also incorporates a range of methods to trans-
form modal formulae into the clausal normal form that the
calculus operates on. The main loop is based on the given-
clause algorithm implementation in Otter, a variation of the
set of support strategy.

Besides the basic calculus KSP uses three more inference
rules including unit resolution. The user can restrict LRES
by choosing ordered (clauses can only be resolved on their
maximal literals with respect to an ordering chosen by the
prover in such a way to preserve completeness), negative
(one of the premises is a negative clause, i.e. a clause where
all literals are negative), positive (one of the premises is a
positive clause), or negative + ordered resolution (both neg-
ative and ordered resolution inferences are performed). The
completeness of some of these refinements depends on the
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particular normal form chosen. For a comprehensive de-
scription of KSP see [4], the prover itself is available at [5].

4 Evaluation

We have compared KSP with BDDTab, FaCT++ 1.6.3,
InKreSAT 1.0, Spartacus 1.0, and a combination of the op-
timised functional translation [2] with Vampire 3.0 (OFT +
Vampire).

Our benchmarks, available at [5], consist of three collec-
tions of modal formulae:
1. Modalised random QBF (MQBF) formulae [3] (1016

formulae, 617 known to be satisfiable and 399 known
to be unsatisfiable).

2. LWB basic modal logic benchmark formulae, further
subdivided into 18 classes [1] (1008 formulae, half are
satisfiable and half are unsatisfiable by construction of
the benchmark classes).

3. Randomly generated 3CNFK formulae [7] over 3 to 10
propositional symbols with modal depth 1 or 2 (1000
formulae, 457 are known to be satisfiable and 464 are
known to be unsatisfiable).

Figure 1 shows the performance of the various provers on
these three collections of benchmark formulae, in particu-
lar, the graphs show how many formulae a prover can solve
if given a certain amount of CPU time to solve each. KSP
performs significantly better than any of the other provers
on the MQBF collection. On the LWB collection over-
all, KSP performs about as well as BDDTab, FaCT++ and
InKreSAT, while Spartacus performs best. A more detailed
analysis shows that BDDTab and InKreSAT are the best
performing provers on one LWB class each, OFT + Vam-
pire on two, KSP on six, and Spartacus on eight classes. Fi-
nally, on the 3CNFK collection, InKreSAT is the best per-
forming prover and KSP the worst performing one.

In general, KSP performs best on formulae with high
modal depth where atomic subformulae are (evenly) spread
over a wide range of modal levels. The benchmarks indi-
cate that KSP is a useful addition to the collection of provers
that are already available for Kn.
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[4] Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. KSP:
A resolution-based prover for multimodal K. To appear
in Proc. IJCAR 2016.
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Abstract: The interest of our research are semantic tableau approaches closely related to bottom-up model
generation methods. Using equality-based blocking techniques these can be used to decide logics representable
in first-order logic that have the finite model property. Many common modal and description logics have
these properties and can therefore be decided in this way. This paper integrates congruence closure, which is
probably the most powerful and efficient way to realise reasoning with ground equations, into a modal tableau
system with equality-based blocking. The system is described for an extension of modal logic K characterised
by frames in which the accessibility relation is transitive and every world has a distinct immediate predecessor.
We show the system is sound and complete, and discuss how various forms of blocking such as ancestor
blocking can be realised in this setting.

Tableau systems provide a natural and powerful form
of reasoning widely used for non-classical logics, espe-
cially modal, description, and hybrid logics. In this work
the focus is on semantic tableau systems closely related
to bottom-up model generation methods [2]. Using unre-
stricted blocking [12], which is an equality-based block-
ing technique, these can decide logics with the finite model
property, representable in first-order logic [13, 14]. Many
common modal and description logics have these proper-
ties and can therefore be decided using semantic tableau
systems with equality-based blocking.

For many common modal and description logics there
are ways to avoid the explicit use of equality in the tableau
system. For more expressive logics, with nominals as in
hybrid modal logics and description logics (nominals are
distinguished propositional variables that hold at exactly
one world), it becomes harder to avoid the explicit handling
of equality (though not impossible [7]). For modal logics
where the binary relations satisfy frame conditions express-
ible as first-order formulae with equality, explicit handling
of equations is the easiest and sometimes the only known
way to perform equality reasoning. Single-valuedness of a
relation is an example of a frame condition expressed using
equality. Another example is the following

∀x∃y∀z
(
R(y, x) ∧ x 6≈ y ∧

(
(R(y, z) ∧ R(z, x))

→ (z ≈ x ∨ z ≈ y)
))
,

(1)

where ≈ denotes equality. Provision for explicit equal-
ity reasoning is also necessary for tableau systems with
equality-based blocking.

In semantic tableau systems explicit equality handling
has been realised in a variety of ways. Using standard
equality rules is conceptually easiest and most general, and
is often used [4, 5, 12]. This approach leads to a com-
binatorial explosion of derived formulae to ensure all ele-
ments in the same equivalence class have the same infor-
mation content. Many of these formulae are unneeded and
fewer formulae are derived when using paramodulation-
style rules, where the central idea is replacement of equals

by equals [3, 5]. Ordered rewriting presents a further re-
finement and is significantly more efficient because equa-
tions are oriented by an ordering and then used to simplify
the formulae. Ordered rewriting is used, e.g., in a seman-
tic tableau system of [9] for the description logic SHOI.
Different equality reasoning methods have also been in-
tegrated into non-ground tableau and related approaches,
e.g. [3, 5, 6].

We require efficient handling of ground equations. For
this purpose congruence closure algorithms provide proba-
bly the most efficient algorithms [10]. The Nelson-Oppen
congruence closure method has been incorporated with
Smullyan-type tableau system for first-order logic by [8].
Congruence closure algorithms have also been very suc-
cessfully combined with the DPLL approach and are stan-
dardly integrated in SMT-solvers as theory reasoners for the
theory of equations with uninterpreted function [11].

The motivation of the present work is to combine con-
gruence closure with semantic tableau systems for modal,
description, and hybrid logics. Since it presents a general
framework in which many existing congruence closure al-
gorithms can be described (and in order to achieve more
generality), we combine the abstract congruence closure
system of [1] with our semantic tableau system. Our ul-
timate goal is to provide a general framework with gen-
eral soundness and completeness results for developing
and studying equality reasoning and blocking in semantic
tableau systems. The tableau system we consider has been
obtained in the tableau synthesis framework of [13], but in
this framework equality is accommodated by the standard
equality rules. We have shown how these can be replaced
by abstract congruence closure rules.

The most closely related work is the aforementioned [8],
because the flavour of the tableau systems we are concerned
with is similar to that of Smullyan-type tableau systems for
first-order logic. The key difference is the way in which we
use the congruence closure algorithm: In [8], the congru-
ence closure component is essentially a black box that is
queried to check entailed equalities. In contrast, we use the
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convergent term rewrite system produced by the abstract
congruence closure algorithm also systematically to nor-
malise the remaining tableau formulae. This means that du-
plication of formulae is avoided and that restrictions of the
search space that depend on normalisation can be applied
easily. In addition, we show that the ideas are not limited to
a fixed set of the well-known tableau rules for first-order
logic, but can be combined with special-purpose tableau
systems of other logics having other kinds of tableau rules.
Also related is [9] and the implementation of equality rea-
soning in METTEL-generated tableau provers [16], where
ordered rewriting is used. This work does however not have
the same level of generality as abstract congruence closure.

We present an abstract semantic tableau system with ab-
stract ways of handling both blocking and equality. The
focus is on showing how the abstract congruence closure
system of [1] can be combined with a semantic tableau
system for a modal logic. In contrast to earlier work, we
use a “white box” integration, so that the abstract congru-
ence closure is not only used to check entailed equalities,
but also to normalize tableau formulae, so that logically
equivalent formulae are eliminated. The particular modal
tableau system was chosen to illustrate the most important
ideas of integrating congruence closure so that the inte-
gration can be extended to other tableau systems for other
modal, description, and hybrid logics. We believe the case
study is general enough to work out how to combine con-
gruence closure with Smullyan-type tableau rules for first-
order logic, or incorporate it into bottom-up model gener-
ation and hypertableau methods. The ideas are also appli-
cable in tableau systems obtained in the tableau synthesis
framework of [13].

The paper in which this work is publieshed is [15].
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Abstract: We continue our investigation of the proof searching procedures developed for natural deduction
calculus for classical and a variety of non-classical logics. In particular, we deal with natural deduction systems
for propositional logics I⟨α,β⟩, where α, β ∈ 0, 1, 2, 3, . . . ω such that I⟨0,0⟩ is classical logic, proposed by
Vladimir Popov. We aim at generalising the concept of an inference for these systems that is fundamental to
proof searching technique for these logics.

1 Introduction

In [6], a logic I⟨α,β⟩ is proposed as Hilbert-style cal-
culi HI⟨α,β⟩, where α, β ∈ 0, 1, 2, 3, . . . ω such that
HI⟨0,0⟩ is classical logic, to deal with a generalization of
Glivenko theorem [5]. We present natural deduction cal-
culi ND⟨α,β⟩, for these logics. We show that A is a the-
orem of HI⟨α,β⟩ iff A is a theorem of ND⟨α,β⟩. More-
over, we present a generalised proof search technique for
each natural deduction calculus in question. The proposi-
tional language L over the alphabet p, p1, p2, . . . , (, ), Bool
(Bool = ∧, ⊃,∨,¬) and a notion of a formula of language
L are defined in the standard way. A formula is said to
be quasi-elementary iff no logical connective of Bool oc-
curs in it [6]. Let |A| abbreviate the length of A, the num-
ber of all occurrences of the logical connectives of L in A.
Letters A,B, C,D, E with lower indices run over arbitrary
formulae. Letters α, β with upper and lower indices run
over arbitrary finite sets of formulae. Letters α, β run over
0, 1, 2, 3, . . . ω.

2 Hilbert-style systems HI⟨α,β⟩

In [6], V. Popov presents a Hilbert-style calculus HI⟨α,β⟩
with the following axioms:

(I) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

(II) A ⊃ (A ∨ B)

(III) B ⊃ (A ∨ B)

(IV) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))

(V) (A ∧ B) ⊃ A

(VI) (A ∧ B) ⊃ B

(VII) (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧ B)))

(VIII) (A ⊃ (B ⊃ C)) ⊃ ((A ∧ B) ⊃ C)

∗This research was supported by Russian Foundation for Humanities,
(Logical-Epistemological Representation of Knowledge), project 16-03-
00749,

(IX) ((A ∧ B) ⊃ C) ⊃ (A ⊃ (B ⊃ C))

(X) (((A ⊃ B) ⊃ A) ⊃ A)

(XI) ¬D ⊃ (D ⊃ A), where D is not a quasi-elementary
formulae and |D| < α

(XII (E ⊃ (¬A ⊃ A)) ⊃ E, where E is not a quasi-
elementary formulae and |E| < β.

Modus ponens is the only inference rule of the calculus.
Definitions of an inference and proof in HI⟨α,β⟩ are stan-
dard as well as notions of their length.

3 ND systems ND⟨α,β⟩

∧ el1
A ∧ B

A
∧ el2

A ∧ B
B

∧ in
A, B
A ∧ B

∨ in1
A

A ∨ B
∨ in2

B
A ∨ B

⊃ el
A ⊃ B, A

B

¬ in1α

D, ¬D
E

where D is not a quasi-elementary

formula with |D| < α.

⊃ in
[A]B

A ⊃ B
⊃p

[A ⊃ B] A
A

¬ in2β

[E] ¬(B ⊃ B)
¬E

Formulae in the square brackets are the last in the list of
assumptions. Additionally, in ¬ in2β

, formula E is not a
quasi-elementary formula with |E| < β.

An inference is said to be a non-empty finite linearly or-
dered sequence of formulae C1, C2, . . . , Ck, satisfying the
following conditions:

• Each Ci is either an assumption or is inferred from the
previous formulae via an ND rule;

• In applying ⊃ in, each formula, starting from the last
assumption [A] up to (but not including) A ⊃ B, the
result of this rule, is discarded from the inference;
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• In applying ⊃P , each formula, starting from the last
premise [A ⊃ B] up to (but not including) A, the result
of this rule, is discarded from the inference;

• In applying ¬ in2β
,each formula, starting from the last

premise [E] up to (but not including) E, the result of
this rule, is discarded from the inference.

Given an inference C1, C2, . . . , Ck with A1, A2, . . . , An

being non-discarded assumptions and with the last for-
mula Ck = B, we have an inference of B from as-
sumptions A1, A2, . . . , An. If the set of formulae Γ con-
tains A1, A2, . . . , An and there is an inference of B from
A1, A2, . . . , An then we say there is an inference of B from
a set of formulae Γ [1].

MAIN THEOREM
Γ ⊢HI⟨α,β⟩ A ⇐⇒ Γ ⊢ND⟨α,β⟩ A, for each α, β ∈

{0, 1, 2, 3, . . . ω}.
Proof Idea. Left to Right:
We need to show that if there exists an inference of A

from Γ in HI⟨α,β⟩ then there exists an inference of A from
Γ in ND⟨α,β⟩. For the proof we define a notion of a ”height
of an inference” (similar to the definitions of heights of
proofs, so that the height of the inference of an axiom is
1, etc) and then we prove this direction of the theorem by
mathematical induction on the height of the inference of
an arbitrary formula A from Γ in HI⟨α,β⟩. The base case
would require to prove all axioms in the ND system. The
proof for the inductive step is of course more involved and
it uses the structural similarity of the modus ponens rule in
the axiomatics and an ND ⊃ el rule.

Right to Left:
We need to show that if there exists an inference of A

from Γ in ND⟨α,β⟩ then there exists an inference of A from
Γ in HI⟨α,β⟩. We note that for the base case the ND infer-
ences are “trivial” and it is easy to construct corresponding
axiomatic proof. For the inductive step, the proof is com-
plex and is based on the identification of the cases of the
applications of the ND rules.

4 Towards Generalised Proof Search for ND⟨α,β⟩

Here we draw a route to formulating this generalised proof
search for natural deduction calculi. We first note that proof
search for various logics is based on the notion of algo-
derivation that is served to establish inferences in an auto-
mated way (for decidable logics).

Algo-derivation in ND⟨α,β⟩, abbreviated as
ND⟨α,β⟩ALG

, is a pair (list proof, list goals) whose
construction is determined by the searching procedure
outlined below.

Below we give a very short insight into the searching
procedures referring the reader to [4], [3], [2] for more
detailed description of various searching techniques that
formed “classical” propositional reasoning in natural
deduction representations of linear-time temporal logic,
paraconsistent logic PCont and paracomplete logic PComp.

Searching Procedures.
Procedure (1). Here we search for an applicable elimi-

nation ND-rule in order to update list proof.
Procedure (2). We look at the structure of the current

goal and update list proof and list goals, respectively, by
new goals or new assumptions. If no updates are possible
and the current goal is not reached we analyse compound
formulae in list proof in order to find sources for new goals.

Procedure (3). This checks the reachability of the cur-
rent goal in the sequence list goals.

Procedure (4). Procedure (4) results in finding a rele-
vant introduction rule to be applied. As we have already
noted, the specifics of our searching technique is complete
determination of the application of the introduction rules.
Any application of such a rule is strictly determined by the
current goal in list goals.

CONJECTURE
Abbreviating an algo-proof of A from Γ in ND⟨α,β⟩ by

Γ ⊢ND⟨α,β⟩ALG
A, we aim to establish the following:

For for each α, β ∈ {0, 1, 2, 3, . . . ω}, Γ⊢ND⟨α,β⟩A if,
and only if, there exists Γ ⊢ND⟨α,β⟩ALG

A.
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